Cyclo-thiazenokomplexe von Molybdän und Wolfram. Die Kristallstruktur von AsPh4[WCl4(N3S2)] / Cyclo-thiazeno Complexes of Molybdenum and Tungsten. The Crystal Structure of AsPh4[WCl4(N3S2)]

1984 ◽  
Vol 39 (12) ◽  
pp. 1680-1685 ◽  
Author(s):  
Ulrich Kynast ◽  
Elke Conradi ◽  
Ulrich Müller ◽  
Kurt Dehnicke

The dark brown cyclo-thiazeno com plexes [MoCl3(N3S2)]2 and [WCl3(N3S2)]2 are obtained by quantitative reactions of MoNCl3 with (NSCl)3 and of WOCl4 or WSCl4 with excess (NSCl)3, respectively. They are diamagnetic, thermally stable up to 200 °C, and only slightly sensitive towards moist air, but react explosively with aqueous bases. According to the IR spectra [MoCl3(N3S2)]2 is dimerized via chloro bridges whereas the tungsten com pound is associated via the γ-nitrogen atoms of the cyclo-thiazeno ligand. By reaction with [AsPh4]Cl or [PPh4]Cl in CH2Cl2, the compounds EPh4[MCl4(N3S2)] are obtained (E = P, As; M = Mo, W). The crystal structure of AsPh4[WCl4(N3S2)] was determined from X-ray diffraction data (1845 observed reflexions, R = 0.045). It crystallizes in the monoclinic space group P21/c with four formula units per unit cell. The lattice constants are a = 1352.4, b = 968.4, c = 2393.8 pm and β = 115.1°. The com pound is built up from AsPh4⊕ cations and [WCl4(N3S2)]⊖ anions in which the W atoms are coordinated in a distorted octahedral fashion by four Cl and two N atoms of the N3S2 ligand. The WN bond lengths (182 and 188 pm) correspond to douple bonds. The WN3S2 ring is planar and has SN bond lengths between 154 and 161 pm.

1985 ◽  
Vol 40 (1) ◽  
pp. 13-18 ◽  
Author(s):  
Kay Jansen ◽  
Kurt Dehnicke ◽  
Dieter Fenske

The syntheses and IR spectra of the complexes [Mo2(O2C-Ph)4X2]2⊖ with X = N3, CI, Br and the counter ion PPh4⊕ are reported. The azido and the bromo complexes are obtained from a solution of [Mo2(O2CPh)4] with PPh4N3 in pyridine or by reaction with PPh4Br in CH2Br2, respectively. When (PPh4)2[Mo2(O2CPh)4(N3)2] is dissolved in CH2Cl2, nitrogen is evolved and the complex with X = CI is obtained. The crystal structure of (PPh4)2[Mo2(O2CPh)4Cl2] · 2CH2Cl2 was determined from X-ray diffraction data (5676 observed independent reflexions, R = 0.042). It crystallizes in the monoclinic space group P21/n with four formula units per unit cell; the lattice constants are a = 1549, b = 1400, c = 1648 pm, β = 94.6°. The centrosymmetric [Mo2(O2CPh)4Cl2]2⊖ ion has a rather short Mo-Mo bond of 213 pm, whereas the MoCl bonds are very long (288 pm)


1985 ◽  
Vol 40 (3) ◽  
pp. 443-446 ◽  
Author(s):  
Udo Demant ◽  
Elke Conradi ◽  
Ulrich Müller ◽  
Kurt Dehnicke

[HC(NH2)2]3FeCl6 was obtained together with other products from the reaction of S4N4 with HCl in H2CCl2 in the presence of FeCl3. Its crystal structure was determined from X-ray diffraction data (473 independent observed reflexions, R = 0.047). Lattice constants: a = 961.6, c = 876.4 pm; tetragonal, space group P42/m, Z = 2. Of the two crystallographically independent formamidinium ions HC(NH2)2⊕, one exhibits positional disorder; the other one has C-N bond lengths of 128 pm. The FeCl63⊖ ions have symmetry C2h, but the deviation from Oh is small.


1996 ◽  
Vol 49 (4) ◽  
pp. 527 ◽  
Author(s):  
PT Gulyas ◽  
TW Hambley ◽  
PA Lay

The crystal structure of [ Ru ( terpy )( bpy )( pz )] (PF6)2 has been determined by X-ray diffraction methods and refined to a residual of 0.046 for 1855 independent observed reflections. The crystals are monoclinic, space group P 21/a, a 16.836(7), b 10.778(5), c l9.342(5) Ǻ, β 115.11(3)°. The coordination geometry around the ruthenium(II) ion is distorted octahedral, with the various Ru -N bond lengths indicative of considerable interligand steric strain. The Ru -N pyrazine bond is the longest within the structure, consistent with other evidence that n back-bonding to pyrazine is weak in the complex.


1979 ◽  
Vol 34 (7) ◽  
pp. 942-948 ◽  
Author(s):  
Wilfried Musterle ◽  
Joachim Strähle ◽  
Wolfgang Liebelt ◽  
Kurt Dehnicke

Abstract Tungsten nitride chloride-POCl3 solvate, [WNCl3 • POCl3]4 • 2 POCl3 is prepared by the reaction of WNCI3 with excess POCI3. With equimolar amounts of POCI3 in dichloromethane suspension the complex [WNCI3 • POCl3]4 • 2 CH2CI2 is formed, which is easily decomposed leaving pure [WNCI3 • POCl3]4. The IR spectra of these complexes were recorded and assigned. A new preparative route to WNCI3 from tungsten hexachloride and iodine azide is described. [WNCI3 • POCl3]4 • 2 POCl3 crystallizes in the triclinic space group P1̅ with two tetrameric units per unit cell. The crystal structure was solved by X-ray diffraction methods (Å = 0,087; 3085 observed reflexions). The structure consists of planar and almost square W4N4-eight-membered rings with alternating W-N bond lengths. The distorted octahedral environment of the tungsten atoms is completed by three terminal Cl-ligands and by the oxygen atom of a POCI3 molecule, which is coordinated trans to the W = N triple bond. The two additional POCI3 molecules are weakly linked to two of the four POCI3 solvate molecules, giving rise to an increase of the W-O bond lengths to these donor groups


2004 ◽  
Vol 68 (5) ◽  
pp. 757-767 ◽  
Author(s):  
T. Mihajlović ◽  
H. Effenberger

AbstractHydrothermal synthesis produced the new compound SrCo2(AsO4)(AsO3OH)(OH)(H2O). The compound belongs to the tsumcorite group (natural and synthetic compounds with the general formula M(1)M(2)2(XO4)2(H2O,OH)2; M(1)1+,2+,3+ = Na, K, Rb, Ag, NH4, Ca, Pb, Bi, Tl; M(2)2+,3+ = Al, Mn3+, Fe3+, Co, Ni, Cu, Zn; and X5+,6+ = P, As, V, S, Se, Mo). It represents (1) the first Sr member, (2) the until now unknown [7]-coordination for the M(1) position, (3) the first proof of (partially) protonated arsenate groups in this group of compounds, and (4) a new structure variant.The crystal structure of the title compound was determined using single-crystal X-ray diffraction data. The compound is monoclinic, space group P21/a, with a = 9.139(2), b = 12.829(3), c = 7.522(2) Å, β = 114.33(3)°, V = 803.6(3) Å3, Z = 4 [wR2 = 0.065 for 3530 unique reflections]. The hydrogen atoms were located experimentally.


2018 ◽  
Vol 34 (1) ◽  
pp. 74-75
Author(s):  
J. A. Kaduk ◽  
K. Zhong ◽  
T. N. Blanton ◽  
S. Gates-Rector ◽  
T. G. Fawcett

Bendamustine hydrochloride monohydrate (marketed as Treanda®) is a nitrogen mustard purine analog alkylator used in the treatment of chronic lymphocytic leukemia (CLL) and non-Hodgkin lymphomas. Commercial bendamustine hydrochloride monohydrate crystallizes in the monoclinic space group P21/c (14), with a = 4.71348(4) Å, b = 47.5325(3) Å, c = 8.97458 (5) Å, β = 96.6515(8)°, V = 1997.161(23) Å3, and Z = 4. A reduced cell search in the Cambridge Structural Database yielded a previously reported crystal structure (Allen, 2002), which did not include hydrogens (Reck, 2006). In this work, the sample was ordered from Santa Cruz Biotechnology, and analyzed as received. The room-temperature crystal structure was refined using synchrotron (λ = 0.413896 Å) powder diffraction data, density functional theory (DFT), and Rietveld refinement techniques. Hydrogen positions were included as part of the structure, and recalculated during the refinement. The diffraction data were collected on beamline BM-11 at the Advanced Photon Source, Argonne National Laboratory. Figure 1 shows the powder X-ray diffraction pattern of the compound. The pattern is included in the Powder Diffraction File as entry 00-064-1508.


1985 ◽  
Vol 40 (12) ◽  
pp. 1631-1637 ◽  
Author(s):  
Ruth Christophersen ◽  
Paul Klingelhöfer ◽  
Ulrich Müller ◽  
Kurt Dehnicke

Abstract The pyridine complexes of cyclo-thiazeno vanadium dichloride, [VCl2(N3S2)py] and [VCl2(N3S2)(py)2] were synthesized by reactions of polymeric VCl2(N3S2) with varying amounts of pyridine in CH2Cl2. The compounds were characterized by their IR spectra as well as by their 51V NM R spectra. The crystal structure of [VCl2(N3S2)(C5H5N)] was determined by means of X-ray diffraction (1582 independent observed reflexions, R = 0.031). Crystal data: orthorhombic, space group Pnma, a = 1372, b - 2261, c - 1068 pm, Z = 12. In the lattice there are two monomeric, crystallographically independent molecules [VCl2(N3S2)(C5H5N)], which differ only slightly. The vanadium atoms have a trigonal bipyramidal coordination with the N atom of the pyridine molecule and one chlorine atom in apical positions, and with one chlorine atom and the N atoms of the cyclo-thiazeno ligand in equatorial positions. The VN bond lengths of the planar VN3S2 ring of 174 pm correspond to double bonds


1988 ◽  
Vol 43 (10) ◽  
pp. 1279-1284 ◽  
Author(s):  
Mervat El Essawi ◽  
H Gosmann ◽  
D Fenske ◽  
F Schmock ◽  
K Dehnicke

Triphenylmethylphosphonium nitrite and formate have been prepared by the reaction of [PPh3Me]I with silver nitrite, and lead formate, respectively, in aqueous solutions. [PPh3Me]NO2 (1) forms pale yellow crystals, and [PPh3Me]HCO2·H2O (2) forms white crystals. Both compounds are soluble in water, ethanol, and dichloromethane. In moist air 2 is hydrated to yield [PPh3Me]HCO2·2H2O (3). The compounds were characterized by their IR spectra, 1 and 2 also by X-ray crystal structure determinations.[PPh3Me]NO2 (1): space group P21/n, Z = 4, 2088 independent observed reflexions, R = 0.062. Lattice dimensions (20 °C): a = 914.7(3), b = 1887.5(9), c = 1080.0(4) pm, β = 110.29(3)°. The compound consists of PPh3Me+ ions and NO2- anions with bond lengths of 114.2(6) pm and a bond angle of 124.1(7)°. [PPh3Me]HCO2·H2O (2): space group P21/n, Z = 4, 2973 independent observed reflexions, R = 0.069. Lattice dimensions (-20 °C): a = 931(2), b = 1558(3), c = 1281(2) pm, β = 105.9(1)°. The compound consists of PPh3Me+ ions and formate anions which form centrosymmetric dimeric units [HCO2·H2O]22- through hydrogen bridges of the water molecules. Bond lengths CO 122.4(4) and 120.9(4) pm. bond angle OCO 129.9(4)°.


1986 ◽  
Vol 41 (7) ◽  
pp. 825-830 ◽  
Author(s):  
Hans-Günter Hauck ◽  
Wolfgang Willing ◽  
Ulrich Müller ◽  
Kurt Dehnicke

AbstractThe thionitrosyl-halothionitrene com pounds (PPh4)2[ReX4(NS)(NSX)]·2 CH2X2, X = Cl or Br, are obtained by nucleophilic ring cleavage of the Re(N2S2) rings of complexes [ReX4(N2S2)]⊖ with PPh4X in CH2X2. (AsPh4)2[ReCl4(NS)(NSCl)] · CH2Cl2 can also be obtained by the reaction of [ReCl4(NSCl)(POCl3)] with S(NSiMe3)2 and subsequent addition of AsPh4Cl. The pyridine complex [ReBr2(NS)(NSBr)(NC5H5)2] · CH2Br2 forms by bromination of the corresponding chloro compound with Me3SiBr. The IR spectra are reported. The crystal structure of (PPh4)2[ReBr4(NS)(NSBr)] · CH2Br2 was determ ined by X-ray diffraction (4158 independent observed reflexions, R = 0.059). Crystal data: a = 1039.7, b - 1232.5, c - 2158.4 pm, α = 81.59, β = 87.05, γ = 77.06°, Z = 2, space group P1̄. The compound consists of PPh4⊕ ions, CH2Br2 molecules, and anions [ReBr4(NS)(NSBr)]2⊖ in which the rhenium atoms are coordinated by four bromine atoms, one thionitrosyl and one brom othionitrene group. The latter have cis arrangement and ReN bond lengths of 186 pm. W hereas the thionitrosyl group is nearly linear, the R = N = SBr group has an ReNS angle of 165°.


1984 ◽  
Vol 39 (12) ◽  
pp. 1686-1695 ◽  
Author(s):  
Jürgen Hanich ◽  
Magda Krestel ◽  
Ulrich Müller ◽  
Kurt Dehnicke ◽  
Dieter Rehder

An improved synthesis for [VCl2(N3S2)]∞, was found in the reaction of VOCl3 with (NSCl)3; when the reaction is performed in H2CCl2 and (NSCl)3 is used in excess, the thiazyl-solvate [VCl2(N3S2) · NSCl]2 is obtained. [VCl2(N3S2)] reacts with AsPh4Cl to form (AsPh4)2[VCl3(N 3S2)]2; this reacts with AgN3 in CH2Cl2 suspension to yield (AsPh4)2[V (N3)3(N3S2)]2 · CH2Cl2. The compounds were characterized by their IR and 51V NMR spectra. The latter are compared with new 51V NMR data for [VO2Cl2]⊖ and [VOCl4]⊖ ; a decrease of 51V shielding in the order [VO2Cl2]⊖ > [VOCl4]⊖ > [VX3(N3S2)]22⊖ (X - N3 > Cl) is found, which is interpreted in terms of increasing polarizability of the ligands and of ring contributions to the extreme deshielding observed with the thiazenovanadates.The crystal structure of (AsPh4)2[V(N3)3(N3S2)]2 · CH2Cl2 was determined from X-ray diffraction data (1496 observed reflexions, R = 0.058). It crystallizes in the triclinic space group P 1̄ with one formula unit per unit cell and with the lattice constants a - 1087, b = 1317, c = 1350 pm, α = 58.8, β = 85.9, γ = 68.0°. The structure consists of AsPh4⊕ ions, CH2Cl2 molecules and centrosymmetric [V(N3)3(N3S2)]22⊖ anions. In the latter. N3S2 ligands are bonded to the V atoms in a chelate manner with short V = N bonds (189 and 172 pm) forming planar VN3S2 rings. The dimerization is accomplished by V -N donor-acceptor interactions (224 pm) involving one N atom of each VN3S2 ring. The vanadium coordination number of 6 is com pleted by three azido groups with V -N bond distances of 200 to 204 pm.


Sign in / Sign up

Export Citation Format

Share Document