scholarly journals Chemie polyfunktioneller Moleküle, 106. Kupfer(I)halogenid — Komplexe des Bis(diphenylphosphino)amins / Chemistry of Polyfunctional Molecules, 106. Copper(I) Halide Complexes of Bis(diphenylphosphino)amine

1990 ◽  
Vol 45 (12) ◽  
pp. 1657-1668 ◽  
Author(s):  
Jochen Ellermann ◽  
Falk A. Knoch ◽  
Klaus J. Meier

Reaction of Copper(I) halides CuX (X = Cl, Br, I) in methanol with bis(diphenylphosphino)amine (dppa, 1) yields complexes [Cu3X2(dppa)3]X (X = Cl, Br, I: 2a–c). The derivates [Cu3X2(dppa)3]PF6 (2a′–c′) have been synthesized by metatheses of 2a–c with NH4PF6. The IR, Raman, 31P{1H} NMR, 1H{31Ρ} NMR, 13C{1H} NMR spectra, and FD mass spectra as well as the conductivity data are reported and discussed together with the X-ray crystal structure of 2a · 5 CH3OH. The structure consists of the trinuclear cations [Cu3Cl2(dppa)3]+, distorted tetrahedral anions [Cl( · · · HOCH3)4]- and molecules of methanol of crystallization, hydrogen bridged to the solvated anions. The Cu3Cl2 core of the cations corresponds closely to a trigonal bipyramid with the copper atoms in the equatorial and the chlorine atoms in the axial positions. The colourless prisms of 2a · 5 CH3OH crystallize in the triclinic space group P1̅, with the lattice constants a = 1368.0(4); b = 1486.7(4); c = 2036.8(10) pm; α = 74.52(3); β = 74.73(3); γ = 82.26(2)°. Raman and 31P{1H} NMR data of the complexes [Cu(X)dppm]4 (dppm = (C6H5)2PCH2P(C6H5)2; X = Br, I) described earlier suggest that these compounds should also be formulated as [Cu3X2(dppm)3]X (4b, c).The Raman spectra of the cations of 2a–c, 2a′–c′ and 4a–c show bands at 165 (X = Cl), 145 (X = Br) and 125 (X = I) cm-1, which can be assigned to the symmetric (XCu3X) stretching mode of the XCu3X unit.

1984 ◽  
Vol 39 (12) ◽  
pp. 1686-1695 ◽  
Author(s):  
Jürgen Hanich ◽  
Magda Krestel ◽  
Ulrich Müller ◽  
Kurt Dehnicke ◽  
Dieter Rehder

An improved synthesis for [VCl2(N3S2)]∞, was found in the reaction of VOCl3 with (NSCl)3; when the reaction is performed in H2CCl2 and (NSCl)3 is used in excess, the thiazyl-solvate [VCl2(N3S2) · NSCl]2 is obtained. [VCl2(N3S2)] reacts with AsPh4Cl to form (AsPh4)2[VCl3(N 3S2)]2; this reacts with AgN3 in CH2Cl2 suspension to yield (AsPh4)2[V (N3)3(N3S2)]2 · CH2Cl2. The compounds were characterized by their IR and 51V NMR spectra. The latter are compared with new 51V NMR data for [VO2Cl2]⊖ and [VOCl4]⊖ ; a decrease of 51V shielding in the order [VO2Cl2]⊖ > [VOCl4]⊖ > [VX3(N3S2)]22⊖ (X - N3 > Cl) is found, which is interpreted in terms of increasing polarizability of the ligands and of ring contributions to the extreme deshielding observed with the thiazenovanadates.The crystal structure of (AsPh4)2[V(N3)3(N3S2)]2 · CH2Cl2 was determined from X-ray diffraction data (1496 observed reflexions, R = 0.058). It crystallizes in the triclinic space group P 1̄ with one formula unit per unit cell and with the lattice constants a - 1087, b = 1317, c = 1350 pm, α = 58.8, β = 85.9, γ = 68.0°. The structure consists of AsPh4⊕ ions, CH2Cl2 molecules and centrosymmetric [V(N3)3(N3S2)]22⊖ anions. In the latter. N3S2 ligands are bonded to the V atoms in a chelate manner with short V = N bonds (189 and 172 pm) forming planar VN3S2 rings. The dimerization is accomplished by V -N donor-acceptor interactions (224 pm) involving one N atom of each VN3S2 ring. The vanadium coordination number of 6 is com pleted by three azido groups with V -N bond distances of 200 to 204 pm.


1994 ◽  
Vol 49 (12) ◽  
pp. 1763-1773 ◽  
Author(s):  
Jochen Ellermann ◽  
Jörg Sutter ◽  
Falk A. Knoch ◽  
Matthias Moll ◽  
Walter Bauer

Reaction of (1) in CH2Cl2 with benzimidazole yields . The salt [4]+BPh4- has been prepared in THF by metathesis of [4]+Cl- with NaBPh4. Deprotonation of the cationic ring in [4]+BPh4- was accomplished using 1,8-diazabicyclo[5.4.01,7]undec-7-ene and resulted in the six-membered carbacyclophosphazene (6). Treating 1 with 8 -hydroxyquinoline in CH2Cl2 yields the octahedral cis-complex = 8-oxyquinolinate group). The com pounds [4]+BPh4-, 6 and 7 are characterized by their IR, Raman, 31P{1H} NMR, 13C{1H} NMR, 1H NMR and mass spectra. Crystals suitable for X-ray structure analyses have been obtained for [4]+BPh4- and 7×0.5 CH2Cl2. The colourless plates of [4]+BPh4- crystallize in the triclinic space group P1̄, with the lattice constants a = 1172.7(3), b = 1326.2(3), c = 1806.1(6) pm; α = 100.79(2), β = 103.71(3), γ = 108.18(2)°. The black blocks of 7×0.5 CH2Cl2 crystallize in the monoclinic space group P 21/c with the lattice constants a = 1159.0(10), b = 2008.9(10), c = 2034.6(12) pm; β = 105.86(5)°.


1985 ◽  
Vol 40 (4) ◽  
pp. 512-517 ◽  
Author(s):  
Udo Kunze ◽  
Hussain Jawad ◽  
Wolfgang Hiller ◽  
Regina Naumer

The tetracarbonyl chromium and molybdenum P,S-chelate complexes 1a, b and 2a, b are obtained by low-temperature photolysis of the metal hexacarbonyls with the neutral phosphinothioformamide ligands, Ph2PC(S)NHR (R = Me (a). Ph (b)), as stoichiometric 1/1 IHF adducts. A weak N-H···O(THF) hydrogen bond is deduced from the 1H NMR spectra which show a collapse of the N-methyl doublet in la (Tc -18 °C) but not in 2a. Unusually small P-C(S) couplings are observed in the 13C{1H} NMR spectra. The N-methyl chromium complex la crystal­lizes in the triclinic space group P1 (Z = 2) with the lattice constants a = 1076.6(3), b = 1235.8(3), c = 915.1(3) pm, α = 97.99(4)°, β = 92.73(5)°, γ = 87.63(5)°. The planar thioamide unit adopts the Z configuration and is linked to the tetrahydrofuran molecule by a hydrogen bond (N-H1-O31 164°) with an O···H contact distance of 191 pm.


1987 ◽  
Vol 65 (4) ◽  
pp. 687-692 ◽  
Author(s):  
Enrique Galvez ◽  
Isabel Iriepa ◽  
Antonio Lorente ◽  
Jose Miguel Mohedano ◽  
Feliciana Florencio ◽  
...  

Reaction of 8-aminoquinoline with pyridine-2-carboxaldehyde (2), pyridine-3-carboxaldehyde (3), pyridine-4-carboxaldehyde (4), and benzaldehyde (5) yields the corresponding aminals or Schiff's bases according to reaction conditions; analogous results are obtained from the reaction of 1-amino-naphtalene with pyridine-2-carboxaldehyde (6). On the other hand, reaction of 8-aminoquinoline with thiophene-2-carboxaldehyde or pyrrole-2-carboxaldehyde yields neither the aminal nor the Schiff's base. Crystals of 4 (C24H19N5) belong to the triclinic space group [Formula: see text]. Cell dimensions are a = 11.547(3), b = 11.759(2), c = 15.687(5) Å, α = 98.50(2)°, β = 101.61(2)°, γ = 107.28(2)°, V = 1942.6(9) Å3. Final R = 0.077 and Rw = 0.064; 3160 reflections were observed. The ir, 1H nmr of 2–6, the mass spectra of 4 and 5 and the X-ray analysis of 4 are described and discussed. Preparative features, ir, 1H nmr, analyses and crystal structure indicate that the formation of 2–6 are governed mainly by the nucleophilicity at the aldehyde carbon atom and the existence of the hydrogen bonds in the aminal.


1991 ◽  
Vol 46 (12) ◽  
pp. 1699-1705 ◽  
Author(s):  
Jochen Ellermann ◽  
Falk A. Knoch ◽  
Klaus J. Meier

Reaction of [Cu(PPh3)2(NO3)] (1) in acetone with bis(diphenylphosphino)amine (dppa, 2) yields [Cu(dppa)(PPh3)2]+NO3- (3a). [Cu(dppa)(PPh3)2]+PF6- (3b) has been synthesized by metatheses of 3a with NH4PF6. The salt [Cu(dppm)(PPh3)2]+PF6- (5b) has been prepared by an one batch reaction of [Cu(PPh3)2(NO3)] (1), bis(diphenylphosphino)methane (dppm, 4) and NH4PF6 in methanol, because [Cu(dppm)(PPh3)2]+NO3- (5a) could not be isolated by the direct reaction of 1 with 4. The IR, Raman, 31P{1H} NMR, 1H{31Ρ} NMR as well as the conductivity data are reported and discussed together with the X-ray crystal structure of 3a · 1.8 (CH3)2CO. The structure consists of copper atoms coordinated tetrahedrally by two PPh3 ligands and the chelating dppa ligand and features a highly strained four-membered ring. The distorted tetrahedral cations are hydrogen bridged to the nitrate anions. The colourless needles of 3a· 1.8 (CH3)2CO crystallize in the monoclinic space group C 2/c, with the lattice constants a = 4189.2(27); b = 1223.7(8); c = 2717.8(15) pm;β = 113.16(4)°.


1994 ◽  
Vol 49 (2) ◽  
pp. 258-262
Author(s):  
Sabi Varbanov ◽  
Elena Russeva ◽  
Andrei Ganchev

A series o f zinc complexes of dimethyl(phthalimidomethyl)phosphine oxide (DPPO, L) have been synthesized: ZnX2L2, where X = Cl, Br, I or NO3. The complexes are characterized by elemental analysis, infrared and 1H NMR spectra and X-ray powder analysis. Infrared spectral data show that L is coordinated to zinc via the phosphoryl oxygen atom. The zinc halide complexes are found to be isostructural, while the pattern o f Zn(NO3)2L2 differs considerably from those o f halide complexes.


1984 ◽  
Vol 62 (4) ◽  
pp. 755-762 ◽  
Author(s):  
Sara Ariel ◽  
David Dolphin ◽  
George Domazetis ◽  
Brian R. James ◽  
Tak W. Leung ◽  
...  

The ruthenium(II) porphyrin complex Ru(OEP)(PPh3)2 (OEP = the dianion of octaethylporphyrin) has been prepared from Ru(OEP)(CO)EtOH, and the X-ray crystal structure determined; as expected, the six-coordinate ruthenium is situated in the porphyrin plane and has two axial phosphine ligands. Synthesized also from the carbonyl(ethanol) precursors were the corresponding tris(p-methoxyphenyl)phosphine complex, and the Ru(TPP)L2 (TPP = the dianion of tetraphenylporphyrin, L = PPh3, P(p-CH3OC6H4)3, P″Bu3) and Ru(TPP)(CO)PPh3 complexes. Optical and 1H nmr data are presented for the complexes in solution. In some cases dissociation of a phosphine ligand to generate five-coordinate species occurs and this has been studied quantitatively in toluene at 20 °C for the Ru(OEP)L2 and Ru(TPP)L2 systems.


1992 ◽  
Vol 47 (6) ◽  
pp. 755-759 ◽  
Author(s):  
Thomas Kaukorat ◽  
Peter G. Jones ◽  
Reinhard Schmutzler

The 1H NMR spectrum of the spirophosphorane 3 at room temperature indicates dynamic behaviour of the cation. The low-temperature 1H NMR spectra of 3 exhibit two sets of doublets for the protons of the diastereotopic N(CH3)2 groups. The free enthalpy of activation for the dynamic process was determined (58.6 KJ/mole). In the reaction of 3 with sodium tetraphenylborate the crystalline compound, 4, involving the non-coordinating anion, [B(C6H5)4]-, was obtained. The X-ray crystal structure analysis of 4 reveals the presence of a five-membered ring, formally as a result of intramolecular donor-acceptor interaction between the nitrogen atom of the N(CH3)2 group and phosphorus. The geometry at phosphorus deviates somewhat from ideal trigonal bipyramidal.


1999 ◽  
Vol 54 (11) ◽  
pp. 1396-1404 ◽  
Author(s):  
Fritz Preuss ◽  
Michael Scherer ◽  
Christoph Klingshirn ◽  
Gabriele Hornung ◽  
Monika Vogel ◽  
...  

N,N′-Bis(trimethylsilyl)benzamidinato complexes of vanadium(V), niobium(V) and tantalum( V) have been prepared starting from tBuN=MCl3 · n py and tBuN=MCpCl2, respectively: tBuN=V[PhC(NSiMe3)2] nCl3-n (n = 1, 2); tBuN=M[RC(NSiMe3)2]Cl · py [M = Nb. Ta; R = C6H5, C6H4(4-CF3)]; tBuN=MCp[RC(NSiMe3)2]Cl [M = V. Nb, Ta; R = C6H5, C6H4- (4-CF3)]; tBuN=VCp[PhC(NSiMe3)2](OtBu). The syntheses of silylated tert-butylamido complexes tBuN=M[NtBu-SiMe2-NHtBu]Cl2 · py (M = Nb, Ta), tBuN=V[NtBu-SiMe2-OtBu]Cl2 and tBuN=M[NtBu-SiMe2-OtBu]Cl2 · py [M = Nb, Ta (20)] are also described. The compounds have been investigated by 1H NMR data,51V NMR data, mass spectra. X-ray data diffraction analysis.


2008 ◽  
Vol 2008 (10) ◽  
pp. 555-558 ◽  
Author(s):  
You Peng ◽  
Zeyuan Deng ◽  
Shaojie Lang ◽  
Yawei Fan

In order to improve bioavailability and anticancer activity of genistein, a series of novel sulfonic acid ester prodrugs of the isoflavone genistein were synthesised in high yield with excellent regioselectivity. Their structures were characterised by IR, MS, elemental analysis and 1H NMR spectra. The crystal structure was examined by X-ray diffraction. X-ray structure determination revealed that all the aromatic rings in the compound are not coplanar. In the crystal structure, molecules are linked through intermolecular C-H···O hydrogen bonds, forming layers parallel to the ab plane.


Sign in / Sign up

Export Citation Format

Share Document