nmr spectrum
Recently Published Documents


TOTAL DOCUMENTS

1221
(FIVE YEARS 106)

H-INDEX

43
(FIVE YEARS 3)

2022 ◽  
Author(s):  
MANISH KUMAR ◽  
VIJAY P. SINGH

Abstract Based on the traditional 77Se NMR spectroscopy investigation, a catalytic cycle for the formation of N-thiophenyl ebselenamine 12 involving diselenide 9, selenenyl sulfide 10 and ebselenamine 7a was reported by the reaction of azo-bis-ebselen 8 with PhSH and H2O2. The signals detected in the 77Se NMR spectrum corresponding to 7a, 10 and 12 were directly isolated from the NMR mixture. Mechanistic investigation for the formation of N-thiophenyl ebselenamine 12 was confirmed from an independent reaction of diselenide 9 and PhSSPh in the presence of H2O2. This was further supported by another diselenide 19 containing p-tolyl group with equimolar amount of H2O2 and PhSH in an independent experiment followed by the 77Se NMR spectroscopy, yielding similar observations. These results, which illustrated diselenide has been observed as the main precursor in the formation of all intermediates. The new novel selenium antioxidants quenched lipidperoxyl radicals much more efficiently than α-tocopherol and were regenerable by the aqueous ascorbic acid in a two-phase (chlorobenzene/water) azo-initiated peroxidation system. The notable benefit of the organoselenium biology, the novel ebselenamine analogues and their corresponding selenenyl sulfides were found to mimic the activity of the glutathione peroxidase enzymes better than ebselen in the coupled reductase assay.


2021 ◽  
Vol 37 (6) ◽  
pp. 1488-1492
Author(s):  
Beena Kumari K. S ◽  
Sudha Devi R ◽  
Nayana Senan V

A new Schiff base ligand derived from curcumin and ethylenediamine has been synthesized by the microwave irradiation method. The synthesized ligand was characterized by using FT-IR, UV-VIS, Molar conductance, NMR, PL and DLS studies. The results confirmed that the successful formation of Curcumin Based Schiff Base ligand. The ligand synthesized was stable at room temperature, completely soluble in hot methanol/DMF, partially soluble in ethanol/DMSO/acetone and insoluble in water. The spectra studies of FTIR and UV-visible confirmed the formation of the azomethine group in the ligand. NMR spectrum confirmed the presence of aromatic proton, hydroxyl proton, amine proton etc in the ligand. The luminescent property of the ligand was confirmed by the photoluminescence spectroscopic method. The low molar conductance value showed the non-electrolytic nature of the ligand. The dynamic light scattering studies showed that the ligand synthesized was in nanometer scale. The structure of the ligand was also proposed based on the analysis reports.


Processes ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 11
Author(s):  
Omojola Awogbemi ◽  
Daramy Vandi Von Kallon ◽  
Victor Sunday Aigbodion ◽  
Vuyisa Mzozoyana

The search for a cost-effective, environmentally friendly and sustainable feedstock for biodiesel production has attracted attention among researchers. After frying, palm oil may become thermally degraded and unsuitable for consumption. In the current effort, neat palm oil (NPO), waste palm oil earlier utilized for frying fish and chips (WPOFC) and waste palm oil previously utilized to fry sausage and chips (WPOSC) were transesterified into waste palm oil methyl ester, namely, WPOMEFC and WPOMESC, respectively. The PO, WPOs and their ester derivatives were subjected to physicochemical properties, fatty acid (FA) compositions and 1H and 13C nuclear magnetic resonance (NMR) analyses. The thermal degradation, transesterification process and the foods the palm oil was used to fry affected the density, kinematic viscosity, acid value, pH, iodine value and FA profile of the samples. The outcome of the characterization reveals that the 1H and 13C NMR spectra of NPO, WPOFC and WPOSC show clear similarity, but NPO exhibits different intensities from that of the WPO samples. The absence of the peaks between δ 4.6 ppm and 5.0 ppm in the 1H NMR spectrum signifies the complete transformation of triglycerides in the WPO samples into biodiesel. The 13C NMR spectrum indicates the presence of ester carbonyl carbon (C=O) in WPOMEFC and WPOMESC, peculiar to ester, at a chemical shift ranging from 174.8 ppm to 174.9 ppm.


Holzforschung ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Yuko Ono ◽  
Miyuki Takeuchi ◽  
Yaxin Zhou ◽  
Akira Isogai

Abstract Eucalyptus (Eucalyptus globulus) cellulose was isolated from wood powder by dewaxing, delignification, and subsequent 4% NaOH extraction. 2,2,6,6-Tetramethyl-piperidine-1-oxyl (TEMPO)-oxidized eucalyptus celluloses were prepared from never-dried eucalyptus cellulose (EC) in yields of 96% and 72% (based on the dry weight of EC) when oxidized with NaOCl of 5 and 10 mmol/g-EC, respectively. Their carboxy contents were 1.4 and 1.8 mmol/g, respectively, when determined by conductivity titration. The crystallinity of cellulose I for EC decreased by TEMPO-mediated oxidation, showing that the originally crystalline region in EC was partly converted to disordered regions by TEMPO-mediated oxidation. Correspondingly, the relative signal area of C6‒OH/C1 with the trans-gauche (tg) conformation attributed to crystalline cellulose I in the solid-state 13C NMR spectrum of EC decreased from 0.42 to 0.34 by TEMPO-mediated oxidation with NaOCl of 10 mmol/g-EC. TEMPO-oxidized EC prepared with NaOCl of 10 mmol/g-EC was almost completely converted into individual TEMPO-oxidized EC nanofibrils (TEMPO-ECNFs) of homogeneous widths of ∼3 nm widths and lengths of >1 μm by mechanical disintegration in water. However, the TEMPO-ECNFs contained many kinks and had uneven surfaces, probably owing to significant damage occurring on the surface cellulose molecules of crystalline cellulose microfibrils during TEMPO-mediated oxidation.


2021 ◽  
Vol 21 (6) ◽  
pp. 1577
Author(s):  
Nurul Husna As Saedah Bain ◽  
Noorshida Mohd Ali ◽  
Yusnita Juahir ◽  
Norhayati Hashim ◽  
Illyas Md Isa ◽  
...  

A cationic complex of iridium(III), [Ir(2,4-F2ppy)2(F2bpyta)]PF6 utilizing 1,2,4-triazolepyridyl as an anchillary ligand modified with a 2,6-difluorobenzyl substituent was synthesized and characterized. The aromatic signals of pyridyltriazole and phenylpyridine proton were detected in the 1H-NMR spectrum between 10.00 and 7.00 ppm. Only one singlet peak was detected at 8.46 ppm H(8) shifted to the upfield, demonstrating that C5 was coordinated to the central iridium metal. The bands exhibited in the range of 1555–1431 cm–1 in the IR spectrum because of the C=C and C=N aromatic rings stretching pyridine, phenyl, and triazole vibrations. The UV-Vis absorption spectrum showed a slight and broad absorbance peak at lower energy at a lmax = 371 nm (e = 6129 M−1 cm−1) in the visible range due to 1MLCT and 3MLCT transitions. Blue emission was observed in the steady-state emission spectral of [Ir(2,4-F2ppy)2(F2bpyta)]PF6 and the other two previously synthesized iridium(III) complexes in CH2Cl2 solutions (air-equilibrated) at room temperature. The spectrum of luminescence for the [Ir(2,4-F2ppy)2(F2bpyta)]PF6 (lem = 461 nm) is blue-shifted when compared to the [Ir(2,4-F2ppy)2(hpyta)]PF6 (lem = 469 nm), but red-shifted when related to the [Ir(2,4-F2ppy)2(mbpyta)]PF6 (lem = 454 nm).


2021 ◽  
Author(s):  
◽  
Struan John Wright Cummins

<p>In the present study, synthetic routes to formal double bonds between gallium and carbon (fig 1), nitrogen (fig 2), and phosphorus (fig 3) have been investigated. These synthetic routes utilised the monoanionic, four electron donor, β-diketiminate (BDI) ligand to provide both steric and electronic stabilisation to three coordinate gallium complexes. The known di-substituted β-diketiminatogallium complexes: [(BDI)GaMe₂] and [(BDI)Ga(NHPh)₂], as well the new complexes: [(BDI)GaBn₂], [(BDI)Ga(NHDMP)₂] (DMP = 2,6-Me₂C₆H₃), [(BDI)Ga(NHDIPP)₂] (DIPP = 2,6-iPr₂C₆H₃), [(BDI)Ga(PHPh)₂] were examined for their reactivity towards the α-proton elimination mechanism for the formation of multiple bonds that is observed in transition metals. All of these complexes were shown to be unreactive towards α-proton elimination.  The di-substituted β-diketiminato-gallium complex [(BDI)GaMe₂] was subjected to various aniline derivatives to investigate if the methyl ligands exhibited the same reactivity as di-methyl transition metal complexes, where the methyl ligands could deprotonate the aniline to form a metal-imido complex. This complex was found to have no reactivity with anilines.  The mono-substituted β-diketiminato-gallium complex [(BDI)Ga(NHDMP)Cl] was tested for its reactivity with ⁿBuLi to abstract the amide proton and eliminate LiCl to form a gallium imido complex. While the ¹H NMR spectrum of the reaction mixture showed that a reaction had occurred, the products could not be isolated for characterisation.  Another mono-substituted β-diketiminato-gallium complex [(BDI)Ga(PHPh)Cl] was also tested for its reactivity with ⁿBuLi to abstract the phosphide proton and eliminate LiCl to form a gallium phosphinidene complex. The ¹H NMR spectrum and ³¹P NMR spectrum of the isolated complex revealed that it still contained a phosphide proton, however the gallium centre now appeared to be bonded to a former methine carbon of an isopropyl group of the BDI ligand (fig 32). This bond may have formed through metathesis between an intermediate containing a gallium-phosphorus double bond, and the C-H bond of the isopropyl group. Further mechanistic studies could confirm if an intermediate such as [fig 3] is formed, and the synthetic strategy altered to isolate it.  The synthesis of β-diketiminato-gallium-alkoxide complexes was also attempted, however the products of these synthesises could not be isolated due to solubility issues, potentially due to polymerisation.</p>


2021 ◽  
Author(s):  
◽  
Struan John Wright Cummins

<p>In the present study, synthetic routes to formal double bonds between gallium and carbon (fig 1), nitrogen (fig 2), and phosphorus (fig 3) have been investigated. These synthetic routes utilised the monoanionic, four electron donor, β-diketiminate (BDI) ligand to provide both steric and electronic stabilisation to three coordinate gallium complexes. The known di-substituted β-diketiminatogallium complexes: [(BDI)GaMe₂] and [(BDI)Ga(NHPh)₂], as well the new complexes: [(BDI)GaBn₂], [(BDI)Ga(NHDMP)₂] (DMP = 2,6-Me₂C₆H₃), [(BDI)Ga(NHDIPP)₂] (DIPP = 2,6-iPr₂C₆H₃), [(BDI)Ga(PHPh)₂] were examined for their reactivity towards the α-proton elimination mechanism for the formation of multiple bonds that is observed in transition metals. All of these complexes were shown to be unreactive towards α-proton elimination.  The di-substituted β-diketiminato-gallium complex [(BDI)GaMe₂] was subjected to various aniline derivatives to investigate if the methyl ligands exhibited the same reactivity as di-methyl transition metal complexes, where the methyl ligands could deprotonate the aniline to form a metal-imido complex. This complex was found to have no reactivity with anilines.  The mono-substituted β-diketiminato-gallium complex [(BDI)Ga(NHDMP)Cl] was tested for its reactivity with ⁿBuLi to abstract the amide proton and eliminate LiCl to form a gallium imido complex. While the ¹H NMR spectrum of the reaction mixture showed that a reaction had occurred, the products could not be isolated for characterisation.  Another mono-substituted β-diketiminato-gallium complex [(BDI)Ga(PHPh)Cl] was also tested for its reactivity with ⁿBuLi to abstract the phosphide proton and eliminate LiCl to form a gallium phosphinidene complex. The ¹H NMR spectrum and ³¹P NMR spectrum of the isolated complex revealed that it still contained a phosphide proton, however the gallium centre now appeared to be bonded to a former methine carbon of an isopropyl group of the BDI ligand (fig 32). This bond may have formed through metathesis between an intermediate containing a gallium-phosphorus double bond, and the C-H bond of the isopropyl group. Further mechanistic studies could confirm if an intermediate such as [fig 3] is formed, and the synthetic strategy altered to isolate it.  The synthesis of β-diketiminato-gallium-alkoxide complexes was also attempted, however the products of these synthesises could not be isolated due to solubility issues, potentially due to polymerisation.</p>


Marine Drugs ◽  
2021 ◽  
Vol 19 (11) ◽  
pp. 627
Author(s):  
A-Young Shin ◽  
Arang Son ◽  
Changhoon Choi ◽  
Jihoon Lee

The chemical investigation of the marine sponge Dysidea sp., which was collected from Bohol province in the Philippines, resulted in the identification of 15 new scalarane-type sesterterpenoids (1–14, 16), together with 15 known compounds. The chemical structures of the new compounds were elucidated based on NMR spectroscopy and HRMS. The structure of 12-epi-phyllactone D/E (15) isolated during this study was originally identified in 2007. However, careful inspection of our experimental 13C NMR spectrum revealed considerable discrepancies with the reported data at C-9, C-12, C-14, and C-23, leading to the correction of the reported compound to the C-12 epimer of 15, phyllactone D/E. The biological properties of compounds 1–16 were evaluated using the MDA-MB-231 cancer cell line. Compound 7, which bears a pentenone E-ring, exhibits significant cytotoxicity with a GI50 value of 4.21 μM.


2021 ◽  
pp. 107079
Author(s):  
Mingxuan Gu ◽  
Ranhong Xie ◽  
Guowen Jin ◽  
Chenyu Xu ◽  
Shuai Wang ◽  
...  

Author(s):  
D. A. Akhmedova ◽  
D. O. Shatalov ◽  
I. S. Ivanov ◽  
A. V. Aydakova ◽  
A. Herbst ◽  
...  

Objectives. To develop a method for the microfluidic synthesis of oligohexamethylene guanidine salts in a flow-type reactor and to evaluate its effectiveness in relation to the synthesis in a traditional capacitive reactor and compare the purities of products obtained by these methods.Methods. The synthesis of oligohexamethylene guanidine bihydrocarbonate (OHMG-BHC) was done using microfluidic hardware and the classical approach in volume. The purity and structure of the resulting product were confirmed by 13C NMR spectroscopy and high-performance liquid chromatography (HPLC).Results. The 13C NMR spectrum of OHMG-BHC in classical bulk synthesis demonstrates that the product is unbranched and contains additionally unidentifiable impurities, in contrast to the sample obtained by the microfluidic method. Furthermore, the HPLC analysis showed that the OHMG-BHC sample synthesized using microfluidic technology has a 1.5-fold lower content than the initial monomers.Conclusions. The advantage of synthesizing OHMG-BHC in a flow-type reactor compared to the traditional method of synthesis in volume is demonstrated since a product with a higher degree of purity is obtained.


Sign in / Sign up

Export Citation Format

Share Document