Preparation, Spectral and Structural Characterization of Two Polymeric 1:1 Mixed Ligand Complexes of Copper(II) Azide with 4-Methylquinoline and 2-Methylpyridine

1991 ◽  
Vol 46 (5) ◽  
pp. 687-692 ◽  
Author(s):  
Mohamed A. S. Goher ◽  
Franz A. Mautner

Two 1:1 mixed ligand complexes of copper(II) azide with substituted quinoline and pyridine, namely catena di-μ(1,1)-azido-(4-methylquinoline)copper(II) (1) and catena di-μ(1,3)-azido-[di-μ(1,1)-azido-bis(2-methylpyridine)dicopper(II)] (2) have been prepared and characterized by X-ray crystallography.Crystal data: 1, C10H9N7Cu, space group P21/c, a = 577.8(2), b = 2202.3(5), c = 919.9(2) pm, β = 93.92(2)°, Ζ = 4, and R = 0.035 for 1293 observed MoKa data; 2, C6H7N7Cu, space group P21/a, a = 823.7(2), b = 1303.8(4), c = 895.3(3) pm, β = 112.23(2)°, Ζ = 4, and R = 0.022 for 2133 observed ΜοΚα diffractometer data. In the structure of 1, the Cu(II) has a strongly distorted trigonal bypyramidal coordination, where both azido groups function as μ(1,1) bridging ligands resulting in a columnar structure along the a axis. The polymeric complex 2 has a less distorted square pyramidal structure; one half of the azide groups act as μ(1,1) bridging ligands to form centrosymmetric dimers. These dimeric units are further connected by the remaining μ(1,3) bridging azido groups to form layers within the ab-plane. Infrared and electronic spectral data are also presented and discussed.

Author(s):  
Marcin Rojkiewicz ◽  
Piotr Kuś ◽  
Maria Książek ◽  
Joachim Kusz

Cathinones belong to a group of compounds of great interest in the new psychoactive substances (NPS) market. Constant changes to the chemical structure made by the producers of these compounds require a quick reaction from analytical laboratories in ascertaining their characteristics. In this article, three cathinone derivatives were characterized by X-ray crystallography. The investigated compounds were confirmed as: 1-[1-(4-methylphenyl)-1-oxohexan-2-yl]pyrrolidin-1-ium chloride (1, C17H26NO+·Cl−, the hydrochloride of 4-MPHP), 1-(4-methyl-1-oxo-1-phenylpentan-2-yl)pyrrolidin-1-ium chloride (2; C16H24NO+·Cl−, the hydrochloride of α-PiHP) and methyl[1-(4-methylphenyl)-1-oxopentan-2-yl]azanium chloride (3; C13H20NO+·Cl−, the hydrochloride of 4-MPD). All the salts crystallize in a monoclinic space group: 1 and 2 in P21/c, and 3 in P21/n. To the best of our knowledge, this study provides the first detailed and comprehensive crystallographic data on salts 1–3.


2004 ◽  
Vol 59 (10) ◽  
pp. 1109-1113 ◽  
Author(s):  
Ali Reza Mahjoub ◽  
Ali Morsali ◽  
Ramin Ebrahim Nejad

AbstractThe 1:2 and 1:1 mixed-ligand mercury(II) complexes with 2,2’-bipyridine (bpy) containing two different anions, Hg(bpy)n(SCN)X (X= CH3COO−, NO3− and ClO4−), have been synthesized and characterized by elemental analysis, and IR, 1H and 13C NMR spectroscopy. The structure of [Hg(bpy)2(SCN)]NO3 was confirmed by X-ray crystallography. The complex is monomeric and the Hg atom has an unsymmetrical five-coordinate geometry, with four nitrogen atoms of two bpy ligands and one sulfur atom of the thiocyanate ligand as donor atoms. This is in contrast to lead(II) complexes, [Pb(phen)2(NO3)(NCS)], [Pb(phen)(O2CCH3)(NCS)] where the thiocyanate ligands are coordinated to the lead atom via the nitrogen atom. There is a π −π stacking interaction between the parallel aromatic rings.


1992 ◽  
Vol 70 (3) ◽  
pp. 792-801 ◽  
Author(s):  
Jagadese J. Vittal ◽  
Philip A. W. Dean ◽  
Nicholas C. Payne

The structures of three tetramethylammonium salts containing anions of formula [(μ-SePh)6(MSePh)4]2− (M = Zn and Cd) were determined by single crystal X-ray diffraction techniques. The Zn salt crystallizes in different space groups depending upon the solvent combination used in the synthesis. Thus crystals of (Me4N)2[Zn4(SePh)10], 1, grown from a mixture of methanol, acetonitrile, and acetone are triclinic, space group [Formula: see text] with cell dimensions a = 13.214(2), b = 23.859(2), c = 13.072(1) Å, α = 91.134(8), β = 113.350(8), γ = 79.865(9)°, and Z = 2. In the absence of acetone, a solvated crystal (Me4N)2[Zn4(SePh)10]•CH3CN, 2, is formed, which belongs to the monoclinic space group P21/n with a = 14.248(1), b = 39.722(2), c = 13.408(1) Å, β = 97.132(5)°, and Z = 4. The Cd salt (Me4N)2[Cd4(SePh)10], 3, crystallizes in the monoclinic space group P21/c, with a = 20.830(2), b = 14.282(1), c = 25.872(1) Å, β = 99.626(6)°, and Z = 4. These three salts are the first examples of homoleptic, tetranuclear selenolatometal(II) anions with (μ-Se)6M4 cages of adamantane-type stereochemistry. In each case the phenyl substituents of the bridging ligands adopt the configuration [aae, aae, aee, aee], which has the minimum number of two 1,3-axial–axial non-bonding substituent interactions. Keywords: selenolate complexes, synthesis, X-ray crystallography, isomerism, adamantane stereochemistry.


1997 ◽  
Vol 50 (1) ◽  
pp. 79 ◽  
Author(s):  
Song-Lin Li ◽  
Thomas C. W. Mak

Two mixed-ligand cadmium(II) complexes have been synthesized from the reaction of 3-triphenyl- phosphoniopropanoate, Ph3P+ (CH2)2CO2¯, and Me2N(CH2)2NMe2 (abbreviated as tmen) with Cd(ClO4)2.x H2O and CdI2, and structurally characterized by single-crystal X-ray analysis: [Cd { Ph3P(CH2)2CO2 } 2(tmen)(H2O)] (ClO4)2.2H2O (1), space group P -1 with a 13·461(5), b 13·694(5), c 18·229(4) Å, α 92·34(2), β 110·51(2), γ 117·44(2)° and Z 2; [CdI2 { Ph3P(CH2)2CO2 } (tmen)] (2), space group P 21/c with a 16·768(6), b 11·741(3), c 16·915(5) Å, β 112·28(2)° and Z 4. In complex (1), the cadmium(II) atom is in a distorted pentagonal bipyramidal environment with two chelated betaine ligands and one nitrogen atom of the chelated tmen ligand defining the equatorial plane, and an aqua ligand and the other tmen nitrogen atom occupying the axial positions. One of the betaine ligands acts in the symmetric and the other in the asymmetric chelate mode. In complex (2), the distorted octahedral coordination environment about the cadmium(II) atom involves a chelated tmen ligand, an asymmetrically chelated betaine ligand, and two cis-related iodo ligands.


Author(s):  
Cory J. Windorff ◽  
Justin N. Cross ◽  
Brian L. Scott ◽  
Stosh A. Kozimor ◽  
William J. Evans

New syntheses have been developed for the synthesis of (borohydrido-κ3 H)tris[η5-(trimethylsilyl)cyclopentadienyl]uranium(IV), [U(BH4)(C8H13Si)3] or Cp′3U(BH4) (Cp′ = C5H4SiMe3) and its structure has been determined by single-crystal X-ray crystallography. This compound crystallized in the space group P\overline{1} and the structure features three η 5-coordinated Cp′ rings and a κ 3-coordinated (BH4)− ligand.


1997 ◽  
Vol 50 (10) ◽  
pp. 951 ◽  
Author(s):  
Jean-Paul Collin ◽  
Pablo Gaviña ◽  
Jean-Pierre Sauvage ◽  
André De Cian ◽  
Jean Fischer

The new phenanthroline ligand 2-(p-methoxyphenyl)-9-(5′-methylpyridin-2′-yl)-1,10-phenanthroline L has been synthesized and shown to form four-coordinate CuI(L)2 (1) and six-coordinate CuII(L)2 (2) complexes. Their structures have been determined by X-ray crystallography: (1) C50H38CuN6O2.BF4, triclinic, space group P -1, a12·924(3), b 14·567(4), c 12·649(3) Å , α 105·57(2), β 107·68(2), γ 104·00(2)°; (2) C50H38CuN6O2.2PF6, monoclinic, space group P 21/c, a 17·701(5), b 19·285(5), c 14·93(4) Å, β 98·20(2)°. In solution, cyclic voltammetry measurements indicate for the copper(I) and copper(II) complexes a very fast rearrangement of the pyridine substituent with the change of the oxidation state. Surprisingly, the X-ray data show two different coordination modes for the ligand around the copper(I) ion, the 1,10-phenanthroline nucleus being either mono- or bi-dentate. In solution, since the 1H n.m.r. spectra obtained even at several temperatures display only one set of signals, it is proposed that a fast equilibrium takes place between two coordination modes of the phenanthroline


2005 ◽  
Vol 60 (4) ◽  
pp. 389-392 ◽  
Author(s):  
Ali Morsali

Complexes [Bi(phen)2(NO3)(NCS)2(MeOH)] and [Bi(phen)2(NO3)2(NCS)] have been synthesized and characterized by their IR spectra and elemental analyses. The structure of the [Bi(phen)2(NO3)(NCS)2(MeOH)] complex has been confirmed by X-ray crystallography. The Bi atoms are unsymmetrically eight-coordinated, N6O2. The arrangement of the ligands does not show a gap in the coordination geometry around the Bi(III) ion, indicating that its lone pair of electrons is not active. The thiocyanate ligands are coordinated to the bismuth atom via the nitrogen atom. There is π-π stacking interactions between the parallel aromatic rings belonging to adjacent chains


Sign in / Sign up

Export Citation Format

Share Document