Synthesis and Structural Characterization of Copper(I) and Copper(II) Complexes with an Ambivalent Phenanthroline-Type Ligand

1997 ◽  
Vol 50 (10) ◽  
pp. 951 ◽  
Author(s):  
Jean-Paul Collin ◽  
Pablo Gaviña ◽  
Jean-Pierre Sauvage ◽  
André De Cian ◽  
Jean Fischer

The new phenanthroline ligand 2-(p-methoxyphenyl)-9-(5′-methylpyridin-2′-yl)-1,10-phenanthroline L has been synthesized and shown to form four-coordinate CuI(L)2 (1) and six-coordinate CuII(L)2 (2) complexes. Their structures have been determined by X-ray crystallography: (1) C50H38CuN6O2.BF4, triclinic, space group P -1, a12·924(3), b 14·567(4), c 12·649(3) Å , α 105·57(2), β 107·68(2), γ 104·00(2)°; (2) C50H38CuN6O2.2PF6, monoclinic, space group P 21/c, a 17·701(5), b 19·285(5), c 14·93(4) Å, β 98·20(2)°. In solution, cyclic voltammetry measurements indicate for the copper(I) and copper(II) complexes a very fast rearrangement of the pyridine substituent with the change of the oxidation state. Surprisingly, the X-ray data show two different coordination modes for the ligand around the copper(I) ion, the 1,10-phenanthroline nucleus being either mono- or bi-dentate. In solution, since the 1H n.m.r. spectra obtained even at several temperatures display only one set of signals, it is proposed that a fast equilibrium takes place between two coordination modes of the phenanthroline

1995 ◽  
Vol 50 (7) ◽  
pp. 1018-1024 ◽  
Author(s):  
Axel Michalides ◽  
Dagmar Henschel ◽  
Armand Blaschette ◽  
Peter G. Jones

In a systematic search for supramolecular complexes involving all combinations of the cyclic polyethers 12-crown-4 (12C4), 15-crown-5 (15C 5), 18-crown-6 (18C 6) and dibenzo- 18-crown-6 (DB -18C6), and the geminal di- or trisulfones H2C(SO 2Me)2, H2C (SO2Et)2 and HC (SO2Me)3-n (SO2Et)n (n = 0 -3 ) , only the following four complexes could be isolated and unequivocally characterized by elemental analysis and 1H NMR spectroscopy: [(12C4){H2C (SO2Et)2}2] (3), [(18C6){H2C (S O2Me)2}] (4), [(DB -18C 6){H2C (SO2Et)2}] (5) and [(D B -18C 6)2{HC (SO2Me )(SO2Et)2}3] (6). The structure of 3 (triclinic, space group P1̄) consists of crystallographically centrosymmetric formula units, in which the disulfone molecules are bonded on each side of the ring by two C -H ··· O(crown) interactions originating from the central methylene group (H···O 213 pm) and from the methylene group of one EtSO2 moiety ( H ··· O 237 pm). Formula units related by translation are connected into parallel strands by a third type of reciprocal C -H ···O bond (H ···O 232 pm) between the second H atom of the central methylene group and a sulfonyl oxygen atom of the adjacent unit. The structure of 4 (monoclinic, space group C2/c) showed severe disorder of the crown ether and could not be refined satisfactorily. Compounds 5 and 6 crystallized as long and extremely thin fibres, indicative of linear-polymeric supramolecular structures; single crystals for X-ray crystallography were not available.


Author(s):  
Marcin Rojkiewicz ◽  
Piotr Kuś ◽  
Maria Książek ◽  
Joachim Kusz

Cathinones belong to a group of compounds of great interest in the new psychoactive substances (NPS) market. Constant changes to the chemical structure made by the producers of these compounds require a quick reaction from analytical laboratories in ascertaining their characteristics. In this article, three cathinone derivatives were characterized by X-ray crystallography. The investigated compounds were confirmed as: 1-[1-(4-methylphenyl)-1-oxohexan-2-yl]pyrrolidin-1-ium chloride (1, C17H26NO+·Cl−, the hydrochloride of 4-MPHP), 1-(4-methyl-1-oxo-1-phenylpentan-2-yl)pyrrolidin-1-ium chloride (2; C16H24NO+·Cl−, the hydrochloride of α-PiHP) and methyl[1-(4-methylphenyl)-1-oxopentan-2-yl]azanium chloride (3; C13H20NO+·Cl−, the hydrochloride of 4-MPD). All the salts crystallize in a monoclinic space group: 1 and 2 in P21/c, and 3 in P21/n. To the best of our knowledge, this study provides the first detailed and comprehensive crystallographic data on salts 1–3.


1992 ◽  
Vol 70 (3) ◽  
pp. 792-801 ◽  
Author(s):  
Jagadese J. Vittal ◽  
Philip A. W. Dean ◽  
Nicholas C. Payne

The structures of three tetramethylammonium salts containing anions of formula [(μ-SePh)6(MSePh)4]2− (M = Zn and Cd) were determined by single crystal X-ray diffraction techniques. The Zn salt crystallizes in different space groups depending upon the solvent combination used in the synthesis. Thus crystals of (Me4N)2[Zn4(SePh)10], 1, grown from a mixture of methanol, acetonitrile, and acetone are triclinic, space group [Formula: see text] with cell dimensions a = 13.214(2), b = 23.859(2), c = 13.072(1) Å, α = 91.134(8), β = 113.350(8), γ = 79.865(9)°, and Z = 2. In the absence of acetone, a solvated crystal (Me4N)2[Zn4(SePh)10]•CH3CN, 2, is formed, which belongs to the monoclinic space group P21/n with a = 14.248(1), b = 39.722(2), c = 13.408(1) Å, β = 97.132(5)°, and Z = 4. The Cd salt (Me4N)2[Cd4(SePh)10], 3, crystallizes in the monoclinic space group P21/c, with a = 20.830(2), b = 14.282(1), c = 25.872(1) Å, β = 99.626(6)°, and Z = 4. These three salts are the first examples of homoleptic, tetranuclear selenolatometal(II) anions with (μ-Se)6M4 cages of adamantane-type stereochemistry. In each case the phenyl substituents of the bridging ligands adopt the configuration [aae, aae, aee, aee], which has the minimum number of two 1,3-axial–axial non-bonding substituent interactions. Keywords: selenolate complexes, synthesis, X-ray crystallography, isomerism, adamantane stereochemistry.


Author(s):  
Sandeep Kumar ◽  
Ruchi Khajuria ◽  
Amanpreet Kaur Jassal ◽  
Geeta Hundal ◽  
Maninder S. Hundal ◽  
...  

Donor-stabilized addition complexes of nickel(II) with disubstituted diphenyldithiophosphates, [{(ArO)2PS2}2NiL2] {Ar = 2,4-(CH3)2C6H3[(1), (5)], 2,5-(CH3)2C6H3[(2), (6)], 3,4-(CH3)2C6H3[(3), (7)] and 3,5-(CH3)2C6H3[(4), (8)];L= C5H5N [(1)–(4)] and C7H9N [(5)–(8)]}, were successfully isolated and characterized by elemental analysis, magnetic moment, IR spectroscopy and single-crystal X-ray analysis. Compound (4) crystallizes in the monoclinic space groupP21/nwhereas compounds (7) and (8) crystallize in the triclinic space group P\bar 1. The single-crystal X-ray diffraction analysis of (4), (7) and (8) reveals a six-coordinated octahedral geometry for the NiS4N2chromophore. Two diphenyldithiophosphate ions act as bidentate ligands with their S atoms coordinated to the Ni centre. Each of them forms a four-membered chelate ring in the equatorial plane. The N atoms from two donor ligands are axially coordinated to the Ni atom.


2008 ◽  
Vol 63 (10) ◽  
pp. 1155-1159 ◽  
Author(s):  
Thomas Glöge ◽  
Dejan Petrovic ◽  
Cristian G. Hrib ◽  
Peter G. Jones ◽  
Matthias Tamm

AbstractThe reaction of the diimine ligand 1,2-bis(1,3-diisopropyl-4,5-dimethylimidazolin-2-imino)ethane (BLiPr) with tetrameric [Cp*RuCl]4 in a 1 : 0.75 ratio afforded the complex salt [1][2] containing the 16-electron half-sandwich cation [Cp*Ru(BLiPr)]+ (1) and the dinuclear anion [Cp*Ru(μ- Cl)3RuCp*]− (2). The X-ray crystal structures of [1][2]·31/2THF (monoclinic, space group P21/n, Z = 4) and of [1][2]·THF (monoclinic, space group C2/m, Z = 4) are reported, allowing the structural characterization of the unprecedented anion 2, in which two [(η5-C5Me5)Ru(II)] moieties are bridged by three μ2-chlorine atoms.


1999 ◽  
Vol 77 (11) ◽  
pp. 1821-1833 ◽  
Author(s):  
Ian R Baird ◽  
Steven J Rettig ◽  
Brian R James ◽  
Kirsten A Skov

Ru(hfac)3 (2) was synthesized via peroxide oxidation of the Ru(II) species [Na][Ru(hfac)3] (1) (hfac = 1,1,1,5,5,5-hexafluoroacetylacetonate). Treatment of either 1 or 2 with CF3SO3H in MeCN generated cis-Ru(hfac)2(MeCN)2 (3). Ru(acac)2(hfac) (4) (acac = acetylacetonate) was generated by addition of hfac to an EtOH solution of cis-[Ru(acac)2(MeCN)2][CF3SO3]. Subsequent treatment of 4 with CF3SO3H in MeCN yielded cis-Ru(acac)(hfac)(MeCN)2 (7). Syntheses of [Na][Ru(hfac)2(acac)] (5) and Ru(hfac)2(acac) (6) are also reported. The complexes were characterized generally by elemental analysis, cyclic voltammetry, UV-vis, NMR, and IR spectroscopies. The structures of 2, 3, and 7 were established by X-ray crystallographic analyses. Crystals of 2 are monoclinic with a = 8.7781(4), b = 13.0760(11), c = 19.1857(5) Å, β = 92.2275(5)°, Z = 4, and space group P21/n; those of 3 are monoclinic with a = 25.731(4), b = 8.8332(13), c = 18.1955(4) Å, β = 93.3395(6)°, Z = 8, and space group C2/c; and those of 7 are triclinic with a = 7.6812(9), b = 10.680(2), c = 12.578(2) Å, α = 88.062(6)°, β = 83.874(3)°, γ = 69.5898(15)°, Z = 2, and space group Pbar over 1. The structures were solved by Patterson methods and refined by full-matrix least-squares procedures to R(F) = 0.036, 0.035, and 0.068 (Rw(F2) = 0.061,Rw(F) = 0.052, and Rw(F) = 0.089), respectively.Key words: ruthenium, β-diketonato complexes, acetylacetonate, 1,1,1,5,5,5-hexafluoroacetylacetonate, acetonitrile complexes.


1993 ◽  
Vol 71 (5) ◽  
pp. 726-737 ◽  
Author(s):  
Jianliang Xiao ◽  
Martin Cowie

Reaction of the tetracarbonyl species [M(CO)2(µ-mtz)]2 (M = Rh, Ir; mtz = 2-mercaptothiazolinate) with 1 equivalent of the diphosphines (Ph2P(CH2)nPPh2; n = 1 (dppm), 2 (dppe)) yields the compounds [M2(CO)2(µ-L)(µ-mtz)2] (M = Rh, L = dppm (1), dppe (3); M = Ir, L = dppm (2)), which readily undergo oxidative addition of iodine to give [M2I2(CO)2(µ-L)(µ-mtz)2] (M = Rh, L = dppm (4), dppe (6); M = Ir, L = dppm (5)). When 2 equivalents of dppm are used, the A-frame compounds [M2(CO)2(η1-mtz)(µ-mtz)(dppm)2] (M = Rh (7), Ir (8)) are afforded. In solution the dangling mtz group of 7 undergoes exchange with both the free mtz anion and the bridging mtz ligand. Compounds 7 and 8 are also produced by treatment of trans-[MCl(CO)(dppm)]2 (M = Rh, Ir) with 2 equivalents of the mtz anion. Reaction of these dppm-bridged dichloro species with 1 equivalent of the mtz anion yields [M2Cl(CO)2(µ-mtz)(dppm)2] (M = Rh (9a), Ir (10)). Compound 9a undergoes reversible Cl− dissociation to give [Rh2(CO)2(µ-mtz)(dppm)2][Cl] (9b), which is also the stable form in the solid. Reaction of 9 with CO gives the carbonyl-bridged species [Rh2(CO)2(µ-CO)(µ-mtz)(dppm)2][Cl]. The structures of 6 and 9b have been determined by X-ray crystallography. Compound 6 crystallizes in the triclinic space group [Formula: see text] with one-half equivalent of THF per asymmetric unit in a cell having a = 9.856(3) Å, b = 14.078(6) Å, c = 16.245(5) Å, α = 103.66(3)°, β = 93.21(3)°, γ = 92.91(3)°, V = 2182(1) Å3, and Z = 2, and has refined to R = 0.045 and Rw = 0.057 on the basis of 433 parameters varied. Compound 9b crystallizes with one equivalent of CH2Cl2 in the monoclinic space group P21/n with a = 11.400(1) Å, b = 21.944(2) Å, c = 22.134(1) Å, β = 92.494(7)°, V = 5532(1) Å3, and Z = 4, and has refined to R = 0.062 and Rw = 0.082 on the basis of 613 parameters varied.


1999 ◽  
Vol 54 (3) ◽  
pp. 349-356 ◽  
Author(s):  
C. Drewes ◽  
W. Preetz

By electrochemical oxidation of (n-Bu4N)[B6H6(CH3)] in the presence of nitrite ions and of the base DBU in dichloromethane solution cis- and trans-[B6H4(CH3)(NO2)]2- , fac- [B6H3(CH3)(NO2)2]2- and mer-[B6H3(CH3)(NO2)c2]2- are formed. X-ray diffraction analyses have been performed on single crystals of cis-(Ph4As)2[B6H4(CH3O)(NO2)] (1) (monoclinic, space group P21/a, a = 20.063(2), b = 10.858(1), c =21.384(2) Å, β = 105.818(9)°, Z = 4), fac-(Ph4As)2[B6H3(CH3)(NO2)2] ·CH3CN (2) (triclinic, space group P1̄, a = 10.333(3), b = 10.695(3), c = 22.833(6) Å, α = 93.91(3), β = 96.79(3), γ = 104.56(2)°, Z = 2), and mer-(Ph4P)2[B6H3(CH3)(NO2)c2] (3) (triclinic, space group P1̄, a - 10.100(1), b = 10.402(3), c = 22.923(3) Å, α = 96.328(18), β = 89.928(12), γ = 107.963(16)°, Z = 2). The 11B NMR spectra and the vibrational spectra of the methylnitro compounds are discussed and compared with those of the monomethyl- and mononitro-closo-hexaborates.


1989 ◽  
Vol 42 (6) ◽  
pp. 907 ◽  
Author(s):  
LM Engelhardt ◽  
PC Healy ◽  
JD Kildea ◽  
AH White

The mononuclear adducts chloro - and bromo-pyridinebis (triphenylphosphine)silver have been synthesized and structurally characterized by single-crystal X-ray diffraction methods. The two complexes are isomorphous, monoclinic, space group P21 or P21/m, a ≈ 9.8, b ≈ 20.0, c ≈ 9.1 � , β ≈ 97.5�, Z 2; in space group P21/m, they were refined to residuals of 0.038, 0.036 for 2392, 2157 'observed' reflections respectively. No comparable iodide adduct has been isolated. In both structures the silver atom is four-coordinate; Ag-Cl,Br are 2.511(2), 2.629(1) �; Ag-P, 2.472(1), 2.476(1) �, and Ag-N, 2.585(5), 2.570(5) � respectively, the Ag-N distance being longer than Ag-P, indicating very weak coordination of the pyridine.


1987 ◽  
Vol 40 (2) ◽  
pp. 381 ◽  
Author(s):  
JA Broomhead ◽  
JH Enemark ◽  
B Hammer ◽  
RB Ortega ◽  
W Pienkowski

The reaction of SO2 and W(CO)3(S2CNR2)2 in dichloromethane solution under dinitrogen gives the title complex along with WS(S2)(S2CNR2)2 and Syn-W2O2(�-S)2(S2CNR2)2 (R = Me, Et, Pri , C6H5CH2; NR2 = pyrrolidinyl ). X-ray structural analysis of WO(S2)(S2CNEt2)2 reveals a seven-coordinate tungsten complex with a terminal oxo group and a dihapto - disulfido ligand in a mutually triangular arrangement. Crystals are monoclinic space group P21 1 n, with a 9.379(2), b 22.276(7), c 9.408(2), β 106.86(1)�, U 188l.1(7) �33 and Z 4.2758 independent data were refined to a weighted agreement factor 0.036.


Sign in / Sign up

Export Citation Format

Share Document