Die Kristallstrukturen der silylierten Phosphanimine Me3SiNPPh3 und Me3SiNPPh2 - C2H4 - PPh2NSiMe3 / Crystal Structures of the Silylated Phosphanimines Me3SiNPPh3 und Me3SiNPPh2 - C2H4 - PPh2NSiMe3

1995 ◽  
Vol 50 (7) ◽  
pp. 1050-1054 ◽  
Author(s):  
Frank Weller ◽  
Hak-Chul Kang ◽  
Werner Massa ◽  
Thilo Rübenstahl ◽  
Frank Kunkel ◽  
...  

The crystal structures of two silylated phosphanimines have been determined. Me3SiNPPh3: Space group P 1̃, Z = 2, structure refinement with 2907 observed unique reflections with Fo > 5 σ(Fo), R = 0.052. Lattice dimensions at 19 °C: a = 876.6(1), b = 1125.8(1), c = 1151.2(1) pm, α = 61.71(1)°, β = 88.08(1)°, γ = 87.18(1)°. The compound forms monomeric molecules with a SiNP bond angle of 140.2° and bond lengths PN of 154.2 pm and SiN of 168.6 pm which correspond with PN double and SiN single bonds. Me3SiNPPh2 - C2H4 -PPh2N SiMe3: Space group P31, Z = 3, structure refinement with 4251 independent reflections, R = 0.061 for 3587 reflections with I > 2σ(I). Lattice dimensions at - 80 °C: a = b = 1591.4(1), c = 1165.8(1) pm. The compound forms monomeric molecules with a c/s-conformation of the PNSiMe3 groups. Bond angles and bond lengths (average) are SiNP = 140.8°, PN = 153.8 pm, SiN = 165.6 pm.

1999 ◽  
Vol 52 (10) ◽  
pp. 983 ◽  
Author(s):  
Yang-Yi Yang ◽  
Seik Weng Ng ◽  
Xiao-Ming Chen

Three tetranuclear copper(II)–lanthanide(III) complexes of triphenylphosphoniopropionate (Ph3P+CH2CH2CO2−,tppp), namely [Cu2Ln2(tppp)8(H2O)8](ClO4)10·2H 2 O [Ln = EuIII, NdIII or CeIII], were synthesized and characterized by crystallography. The EuIII complex crystallizes in the triclinic space group P1 – with a 16.249(7), b 17.185(11), c 17.807(11) Å, α 69.750(10), β 89.230(10), γ 84.070(10)˚, V 4639(5) Å3, Z 1. In the crystal structures, four tppp ligands bridge a pair of CuII and tetraaquo-EuIII atoms (Cu···Eu 3.527(2) Å) through their µ2-carboxylato ends to form a dinuclear subunit; two of these subunits are additionally linked by one of the CuII -bonded carboxylato oxygen ends, across a centre of inversion, to furnish a dimeric tetranuclear [Cu(tppp)4 Eu(H2O)4]2 species (Cu···Cu 3.323(2) Å). This CuII -bonded oxygen atom occupies the apical site of the square-pyramidal coordination environment of the CuII atom. The EuIII atom is eight-coordinated in a square-antiprismatic geometry. The NdIII and CeIII complexes are isomorphous to the EuIII complex, and only minor differences in bond lengths and bond angles involving the metal atoms are noted.


1988 ◽  
Vol 43 (1) ◽  
pp. 5-11 ◽  
Author(s):  
Andrea Maurer ◽  
Dieter Fenske ◽  
Johannes Beck ◽  
Joachim Strähle ◽  
Eberhard Böhm ◽  
...  

Abstract The title compounds Ph3PNPh · CuCl (1) and (Ph3P)2 N2 C4O2 (NMe) CuCl (2) have been prepared by the reactions of CuCl with the corresponding phosphoranimines Ph3PNPh and 2.3-bis(triphenylphosphoranylideneamino)maleic acid N-methylimide, respectively. Both com-plexes were characterized by their IR spectra as well as by crystal structure determinations. Ph3PNPh · CuCl (1): space group P1, Z = 4, 3639 independent observed reflexions, R = 0.038. Lattice dimensions (18 °C): a = 1047.6; b = 1251.5; c = 1755 pm; α = 103.43°; β = 97.24°; γ = 101.30°. The compound forms monomeric molecules; the asymmetric unit contains two crystallo-graphically independent molecules. The CuCl molecule is bonded via the N atom of the phos-phoranimine. Bond lengths: Cu-N = 189 pm; Cu-CI = 209 pm; bond angle N - Cu - CI = 177°. (Ph3P)2N2C4O2(NMe) · CuCl (2): space group Pbca, Z = 8, 5611 independent, observed reflexions, R = 0.069. Lattice dimensions (25 °C): a = 1224.3; b = 1962.5: c = 2994.0 pm. The compound forms monomeric molecules with the CuCl molecule bonded via one of the N atoms of the phosphoranimine groups. Bond lengths: Cu - N = 194 pm; Cu-CI = 212 pm; bond angle N-Cu -CI -175°.


2003 ◽  
Vol 58 (11) ◽  
pp. 656-660 ◽  
Author(s):  
B. Thimme Gowda ◽  
K. Jyothi ◽  
Jozef Kožíšek ◽  
Hartmut Fuess

Effect of ring substitution on the crystal structures of p-substitutedbenzenesulphonamides, p-XC6H4SO2NH2 (X = F, Cl, Br, CH3 or NH2) has been studied by determining the crystal structures of 4-chlorobenzenesulphonamide (4-ClC6H4SO2NH2) and 4-bromobenzenesulphonamide (4-BrC6H4SO2NH2) and analyzing the results along with the structures of 4-methylbenzenesulphonamide (4-CH3C6H4SO2NH2), 4-fluorobenzene-sulphonamide (4-FC6H4SO2NH2) and 4-aminobenzenesulphonamide (4-NH2C6H4SO2NH2). The crystal type, space group, formula units and lattice constants in Å of new structures are: (4-ClC6H4SO2NH2); monoclinic, P21/n, Z = 4, a = 6.6276(10), b = 16.219(3), c = 7.5716(10), β = 93.387(14)°; (4-BrC6H4SO2NH2): monoclinic, P 21/n, Z = 4, a = 6.5660(10), b = 16.4630(10), c = 7.6900(10), β = 92.760(10)°. Orientation of the amine group with respect to the phenyl ring is given by the torsion angles C(2)-C(1)-S-N: 70.9° and C(6)-C(1)-S-N: −108.5°. Similarly, the orientation of S, O(1) and O(2) with respect to the ring are given by torsion angles. The comparison of bond lengths and bond angles of 4-fluoro-, 4-chloro-, 4-bromo-, 4-methyl- and 4-amino-benzenesulphonamides reveal that the S-N and C-S bond lengths decrease with the introduction of electron-withdrawing substituents such as F, Cl or Br, while these groups do not have significant effects on the S-O distances. The effect on ring C-C distances was not uniform. Substitution of F, Cl or Br decreases the O-S-N bond angle, but increases the O-S-N, N-S-C(1) and C(3)-C(4)-C(5) bond angles.


1995 ◽  
Vol 50 (8) ◽  
pp. 1215-1221 ◽  
Author(s):  
Hans-Joachim Mai ◽  
Sigrid Wocadlo ◽  
Werner Massa ◽  
Frank Weller ◽  
Kurt Dehnicke ◽  
...  

The phosphaneimine complexes [MnCl2(Me3SiNPEt3)]2 (1) and [MnI2(Me3SiNPEt3)2] (2) have been prepared by the reaction of Me3SiNPEt3 with MnCl2 and Mnl2, respectively. Thermal decomposition of 2 leads to the chelate complex [MnI2(Me2Si(NPEt3)2)] (3) by cleaving SiMe4. The complexes are characterized by IR spectroscopy and by crystal structure determinations. 1: Space group P21/c, Z = 4, structure solution with 5062 observed unique reflections, R = 0.047. Lattice dimensions at -55 °C: a = 1175.8(5), b = 1634.5(2), c = 1740.2(8), β = 99.58(2)°. 1 forms dimeric molecules via chloro bridges and a cis-arrangement of the Me3SiNPEt3 donor molecules with Mn-N bond lengths of 210.4(5) and 208.2(4) pm. 2: Space group P 41212, Z = 4, structure refinement with 1633 independent reflections, 1072 observed unique reflections, R = 0.053. Lattice dimensions at -60 °C: a = b = 949.5(1), c = 3345.2(7) pm. 2 forms monomeric molecules with tetrahedrally coordinated Mn atoms and Mn-N bond lengths of 220.7(13) pm. 3: Space group P21/c, Z = 4, structure refinement with 8419 independent reflections, 4584 observed unique reflections, R = 0.047. Lattice dimensions at 20 °C: a = 1343.3(1), b = 2508.2(2), c = 1535.1(1) pm, β = 91.742(5)°. 3 forms monomeric molecules with the [Me2Si(NPEt3)2] ligand bound in a chelating fashion with Mn-N bond lengths of 212.9 pm in average.


1988 ◽  
Vol 43 (2) ◽  
pp. 138-148 ◽  
Author(s):  
Eberhard Böhm ◽  
Kurt Dehnicke ◽  
Johannes Beck ◽  
Wolfgang Hiller ◽  
Joachim Strähle ◽  
...  

[Ph3PN(H)Ph][AuI2] (2) is formed by the reaction of AuI with N-Phenyl-iminotriphenylphosphorane, Ph3PNPh in a toluene suspension. 2,3-Bis(triphenylphosphinimino)maleic acid-N-methylimide (3) has been prepared by the Staudinger reaction of 2,3-bis(azido)maleic acid-N-methylimide with PPh3 in THF solution in the form of red crystals. Crystal structure determinations of three iminophosphoranes were carried out by X-ray methods.Ph3PNPh (1): space group P21/c, Z = 4, 2176 independent observed reflexions, R = 0.057. Lattice dimensions (-30 °C): a = 1126.4, b = 1148.6, c = 1476.0 pm; β = 97.21°. The compound forms monomeric molecules with P=N = 160.2 pm and an PNC angle of 130.4°.[Ph3PN(H)Ph][AuI2] (2): space group P1̄, Z = 2, 1780 independent observed reflexions, R = 0.057. Lattice dimensions (18 °C); a = 824.9, b = 1022, c = 1476.2 pm; α = 89.23°, β = 87.41°, γ = 85.65°. The compound consists of ions [Ph3PN(H)Ph]⊕ with P=N = 162.4 pm and PNC = 129.3°, and anions [AuI2]⊖ with Au-I = 261.9 and 259.3 pm, IAuI = 176.8°.(Ph3P)2N2C4O2 (NMe) (3): space group P1̄, Z = 2, 4972 independent observed reflexions, R = 0.050. Lattice dimensions (-90 °C): a = 904.7, b = 993.8, c = 2017.4 pm; α = 101.55°, β = 96.39°, γ = 105.81°. The compound forms monomeric molecules with syn-conformation of the two NPPh3 groups. Bond lengths: P=N = 157.1; 155.3 pm, bond angles: PNC = 133°; 136°


1988 ◽  
Vol 43 (10) ◽  
pp. 1219-1223 ◽  
Author(s):  
Johannes Beck

PPh3Au(tolN5tol) is obtained by the reaction of PPh3Au+ClO4- with Tl(tolN5tol). It crystallizes in the monoclinic space group P21/c with the lattice parameters a = 1548.8(5), b = 1070.7(2), c = 1779.1(3) pm, β = 90.33(2)°, Z = 4. In the monomeric complex the gold atom is nearly linearcoordinated by the phosphorus atom of the PPh3 group and nitrogen atom N3 of the pentaazadienido ligand ( N3 - Au - P 178.4°). tolNN(NCH3)NNtol crystallizes in the orthorhombic space group Pccn with the lattice constants a = 2426.7(9), b = 469.3(2), c = 1195.3(4) pm. The unit cell contains four molecules, located on twofold axes. Due to the isolobality of the CH3 and the PPh3Au group, the two structures are closely related. Both contain the typical planar zig-zag chain of five nitrogen atoms with located double bonds N1-N2 and N4 - N5 (from 119.8 to 126.6 pm) and shortened single bonds N2 - N3 and N3 - N4 (132.7 to 140.0 pm).


Author(s):  
Tarlok Singh Lobana ◽  
Mani Kaushal ◽  
Robin Bhatia ◽  
Ritu Bala ◽  
Ray J. Butcher ◽  
...  

In this investigation, the crystal structures of the thio-ligands 3-formylpyridine 4-phenylthiosemicarbazone (C13H12N4S, 1) and 4-benzoylpyridine 4-ethylthiosemicarbazone (C15H16N4S, 2), and of two new coordination compounds, chlorido(3-formylpyridine 4-phenylthiosemicarbazone-κS)bis(triphenylphosphane-κP)copper(I) acetonitrile monosolvate, [CuCl(C13H12N4S)(C18H15P)2]·CH3CN, 3, and bis(3-formylpyridine 4-ethylthiosemicarbazonato-κ2 N 1,S)nickel(II), [Ni(C9H11N4S)2], 4, are reported. In complex 3, the thio-ligand coordinates in a neutral form to the Cu atom through its S-donor atom, and in complex 4, the anionic thio-ligand chelates to the Ni atom through N- and S-donor atoms. The geometry of complex 3 is distorted tetrahedral [bond angles 99.70 (5)–123.23 (5)°], with the P—Cu—P bond angle being the largest, while that of complex 4 is square planar, with trans-S—Ni—S and N—Ni—N bond angles of 180°.


1988 ◽  
Vol 43 (10) ◽  
pp. 1279-1284 ◽  
Author(s):  
Mervat El Essawi ◽  
H Gosmann ◽  
D Fenske ◽  
F Schmock ◽  
K Dehnicke

Triphenylmethylphosphonium nitrite and formate have been prepared by the reaction of [PPh3Me]I with silver nitrite, and lead formate, respectively, in aqueous solutions. [PPh3Me]NO2 (1) forms pale yellow crystals, and [PPh3Me]HCO2·H2O (2) forms white crystals. Both compounds are soluble in water, ethanol, and dichloromethane. In moist air 2 is hydrated to yield [PPh3Me]HCO2·2H2O (3). The compounds were characterized by their IR spectra, 1 and 2 also by X-ray crystal structure determinations.[PPh3Me]NO2 (1): space group P21/n, Z = 4, 2088 independent observed reflexions, R = 0.062. Lattice dimensions (20 °C): a = 914.7(3), b = 1887.5(9), c = 1080.0(4) pm, β = 110.29(3)°. The compound consists of PPh3Me+ ions and NO2- anions with bond lengths of 114.2(6) pm and a bond angle of 124.1(7)°. [PPh3Me]HCO2·H2O (2): space group P21/n, Z = 4, 2973 independent observed reflexions, R = 0.069. Lattice dimensions (-20 °C): a = 931(2), b = 1558(3), c = 1281(2) pm, β = 105.9(1)°. The compound consists of PPh3Me+ ions and formate anions which form centrosymmetric dimeric units [HCO2·H2O]22- through hydrogen bridges of the water molecules. Bond lengths CO 122.4(4) and 120.9(4) pm. bond angle OCO 129.9(4)°.


1985 ◽  
Vol 40 (2) ◽  
pp. 251-257 ◽  
Author(s):  
Siegfried Pohl ◽  
Wolfgang Saak ◽  
Bernt Krebs

Abstract The compounds [(C6H5)4As]2 TeCl4 (1), [(C2H5)4 N]2 TeBr4 · CH3CN (2), and [(C2H5)4N]2TeI4 (3) were prepared by the reaction of Te, X2 , and excess (C2H5)4NX (X = Br, I) in acetonitrile solution or by heating of [(C6H5)4 As]2TeCl6 , Te, and (C6H5)4 ASCl for several hours in the same solvent.The structures of 1-3 were determined from single crystal X-ray data.1 crystallizes in the monoclinic space group P21/n with a = 1061.8(2), b = 1614.2(3), c = 1341.7(3) pm, β = 94.21° and Z = 2; 2: tetragonal, P4/mmm, a = 1039.7(2), c = 690.5(1), Z = 1; 3: tetragonal, I4/mmm, a = 1061.7(2), c = 1342.8(4), Z = 2. In 1-3 Te(II) exhibits a square planar coordination. The Te -CI, Te -Br, and Te-I bond lengths were found to be 260.7 (mean), 275.3, and 298.5 pm, respectively.


1990 ◽  
Vol 45 (10) ◽  
pp. 1383-1387 ◽  
Author(s):  
Herbert W. Roesky ◽  
Reinhard Hasselbring ◽  
Johannes Liebermann ◽  
Mathias Noltemeyer

The new ligands (Me3Si)2NC(4-CF3C6H4)NP(Ph)2N(SiMe3) (2) and (Me3Si)2NC(4-Me2NC6H4)NP(Ph)2N(SiMe3) (3) have been prepared from 4-CF3C6H4CN or 4-Me2NC6H4CN, respectively, with LiN(SiMe3)2, Ph2PCl and Me3SiN3. In solution, 2 as well as 3 form two isomers. Their structures (2a, 2 b and 3a, 3b) were tentatively assigned on the basis of NMR investigations. Crystals of 2 a and 3a are triclinic, space group PĪ. Bond lengths and bond angles of 2a and 3a are very similar. The influence of the para-substituents on the bonding properties are found to be negligible


Sign in / Sign up

Export Citation Format

Share Document