monomeric complex
Recently Published Documents


TOTAL DOCUMENTS

60
(FIVE YEARS 17)

H-INDEX

14
(FIVE YEARS 1)

Nanomaterials ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 3089
Author(s):  
Junda Zhang ◽  
Vadde Ramu ◽  
Xue-Quan Zhou ◽  
Carolina Frias ◽  
Daniel Ruiz-Molina ◽  
...  

Green light photoactive Ru-based coordination polymer nanoparticles (CPNs), with chemical formula [[Ru(biqbpy)]1.5(bis)](PF6)3 (biqbpy = 6,6′-bis[N-(isoquinolyl)-1-amino]-2,2′-bipyridine; bis = bis(imidazol-1-yl)-hexane), were obtained through polymerization of the trans-[Ru(biqbpy)(dmso)Cl]Cl complex (Complex 1) and bis bridging ligands. The as-synthesized CPNs (50 ± 12 nm diameter) showed high colloidal and chemical stability in physiological solutions. The axial bis(imidazole) ligands coordinated to the ruthenium center were photosubstituted by water upon light irradiation in aqueous medium to generate the aqueous substituted and active ruthenium complexes. The UV-Vis spectral variations observed for the suspension upon irradiation corroborated the photoactivation of the CPNs, while High Performance Liquid Chromatography (HPLC) of irradiated particles in physiological media allowed for the first time precisely quantifying the amount of photoreleased complex from the polymeric material. In vitro studies with A431 and A549 cancer cell lines revealed an 11-fold increased uptake for the nanoparticles compared to the monomeric complex [Ru(biqbpy)(N-methylimidazole)2](PF6)2 (Complex 2). After irradiation (520 nm, 39.3 J/cm2), the CPNs yielded up to a two-fold increase in cytotoxicity compared to the same CPNs kept in the dark, indicating a selective effect by light irradiation. Meanwhile, the absence of 1O2 production from both nanostructured and monomeric prodrugs concluded that light-induced cell death is not caused by a photodynamic effect but rather by photoactivated chemotherapy.


2021 ◽  
Author(s):  
Pu Qian ◽  
David JK Swainsbury ◽  
Tristan Ian Croll ◽  
Jack H Salisbury ◽  
Elizabeth C Martin ◽  
...  

Reaction centre light-harvesting 1 (RC-LH1) complexes are the essential components of bacterial photosynthesis. The membrane-intrinsic LH1 complex absorbs light and the energy migrates to an enclosed RC where a succession of electron and proton transfers conserves the energy as a quinol, which is exported to the cytochrome bc1 complex. In some RC-LH1 variants quinols can diffuse through small pores in a fully circular, 16-subunit LH1 ring, while in others missing LH1 subunits create a gap for quinol export. We used cryogenic electron microscopy to obtain a 2.5 Å resolution structure of one such RC-LH1, a monomeric complex from Rhodobacter sphaeroides. The structure shows that the RC is partly enclosed by a 14-subunit LH1 ring in which each αβ heterodimer binds two bacteriochlorophylls and, unusually for currently reported complexes, two carotenoids rather than one. Although the extra carotenoids confer an advantage in terms of photoprotection and light harvesting, they could block small pores in the LH1 ring and impede passage of quinones, necessitating a mechanism to create a dedicated quinone channel. The structure shows that two transmembrane proteins play a part in stabilizing an open ring structure; one of these components, the PufX polypeptide, is augmented by a hitherto undescribed protein subunit we designate as protein-Y, which lies against the transmembrane regions of the thirteenth and fourteenth LH1α polypeptides. Protein-Y prevents LH1 subunits 11-14 adjacent to the RC QB site from bending inwards towards the RC and, with PufX preventing complete encirclement of the RC, this pair of polypeptides ensures unhindered


Crystals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 886
Author(s):  
Awal Noor

In this work, titanium complexes of the bidentate bulky guanidine ligand [{(Dip)N}2CNR2]H (where Dip = C6H3iPr2-2,6 and R = CH(CH3)2) (LH) were prepared. Reaction of LH with one equivalent of [(CH3)2NTiCl3] underwent amine elimination to afford the monomeric complex [LTiCl3] (1) in high yield. Attempts to reduce 1 with potassium graphite (KC8) in tetrahydrofuran (THF) were unsuccessful. However, reacting 1 with 3.3 equivalents of KC8 in hexane led to the first example of structurally characterized mono-guanidinate ligand stabilized dimeric TiIII complex [LTiCl(μ–Cl)]2 (2). The synthesized complexes were characterized by NMR spectroscopy and the structures were further confirmed by X-ray crystallography.


2021 ◽  
Author(s):  
Amber Knapp-Wilson ◽  
Gonçalo C. Pereira ◽  
Emma Buzzard ◽  
Holly C. Ford ◽  
Andrew Richardson ◽  
...  

Mitochondrial super-complexes form around a conserved core of monomeric complex I and dimeric complex III; wherein subunit NDUFA11, of the former, is conspicuously situated at the interface. We identified B0491.5 (NDUF-11) as the C. elegans homologue, of which animals homozygous for a CRISPR-Cas9 generated knockout allele arrested at the L2 development stage. Reducing (but not eliminating) expression by RNAi allowed development to adulthood, enabling characterisation of the consequences: destabilisation of complex I and its super-complexes, and perturbation of respiratory function. The loss of NADH-dehydrogenase activity is compensated by enhanced complex II activity, with the potential for detrimental ROS-production. Electron cryo-tomography highlight aberrant cristae morphology and inter-membrane-space widening and cristae-junctions. The requirement of NDUF-11 for balanced respiration, mitochondrial morphology and development presumably arises due to its involvement in complex I/ super-complex maintenance. This highlights the importance of respiratory complex integrity for health and the potential of its perturbation for mitochondrial disease.


2021 ◽  
Vol 478 (7) ◽  
pp. 1333-1346
Author(s):  
Parveen Akhtar ◽  
Avratanu Biswas ◽  
László Kovács ◽  
Nathan Nelson ◽  
Petar H. Lambrev

Photosystem I is the most efficient photosynthetic enzyme with structure and composition highly conserved among all oxygenic phototrophs. Cyanobacterial Photosystem I is typically associated into trimers for reasons that are still debated. Almost universally, Photosystem I contains a number of long-wavelength-absorbing ‘red’ chlorophylls (Chls), that have a sizeable effect on the excitation energy transfer and trapping. Here we present spectroscopic comparison of trimeric Photosystem I from Synechocystis PCC 6803 with a monomeric complex from the ΔpsaL mutant and a ‘minimal’ monomeric complex ΔFIJL, containing only subunits A, B, C, D, E, K and M. The quantum yield of photochemistry at room temperature was the same in all complexes, demonstrating the functional robustness of this photosystem. The monomeric complexes had a reduced far-red absorption and emission equivalent to the loss of 1.5–2 red Chls emitting at 710–715 nm, whereas the longest-wavelength emission at 722 nm was not affected. The picosecond fluorescence kinetics at 77 K showed spectrally and kinetically distinct red Chls in all complexes and equilibration times of up to 50 ps. We found that the red Chls are not irreversible traps at 77 K but can still transfer excitations to the reaction centre, especially in the trimeric complexes. Structure-based Förster energy transfer calculations support the assignment of the lowest-energy state to the Chl pair B37/B38 and the trimer-specific red Chl emission to Chls A32/B7 located at the monomer–monomer interface. These intermediate-energy red Chls facilitate energy migration from the lowest-energy states to the reaction centre.


2021 ◽  
Author(s):  
Amber Knapp-Wilson ◽  
Gonçalo C. Pereira ◽  
Emma Buzzard ◽  
Andrew Richardson ◽  
Robin A. Corey ◽  
...  

ABSTRACTMitochondrial super-complexes form around a conserved core of monomeric complex I and dimeric complex III; wherein subunit NDUFA11, of the former, is conspicuously situated at the interface. We identified B0491.5 (NDUF-11) as the C. elegans homologue, of which animals homozygous for a CRISPR-Cas9 generated knockout allele arrested at the L2 development stage. Reducing expression by RNAi allowed development to the adult stage, enabling characterisation of the consequences: destabilisation of complex I and its super-complexes, and perturbation of respiratory function. The loss of NADH-dehydrogenase activity is compensated by enhanced complex II activity, resulting in excessive detrimental ROS production. Meanwhile, electron cryo-tomography highlight aberrant cristae morphology and widening of the inter-membrane space and cristae junctions. The requirement of NDUF-11 for balanced respiration, mitochondrial morphology and development highlights the importance of complex I/ super-complex maintenance. Their perturbation by this, or other means, is likely to be the cause of metabolic stress and disease.


2020 ◽  
Author(s):  
Dongchun Ni ◽  
Kelvin Lau ◽  
Frank Lehmann ◽  
Andri Fränkl ◽  
David Hacker ◽  
...  

AbstractThe human membrane protein Angiotensin-converting enzyme 2 (hACE2) acts as the main receptor for host cells invasion of the new coronavirus SARS-CoV-2. The viral surface glycoprotein Spike binds to hACE2, which triggers virus entry into cells. As of today, the role of hACE2 for virus fusion is not well understood. Blocking the transition of Spike from its prefusion to post-fusion state might be a strategy to prevent or treat COVID-19. Here we report a single particle cryo-electron microscopy analysis of SARS-CoV-2 trimeric Spike in presence of the human ACE2 ectodomain. The binding of purified hACE2 ectodomain to Spike induces the disassembly of the trimeric form of Spike and a structural rearrangement of its S1 domain to form a stable, monomeric complex with hACE2. This observed hACE2 dependent dissociation of the Spike trimer suggests a mechanism for the therapeutic role of recombinant soluble hACE2 for treatment of COVID-19.


Molecules ◽  
2020 ◽  
Vol 25 (6) ◽  
pp. 1446
Author(s):  
James T. Brewster ◽  
Harrison D. Root ◽  
Hadiqa Zafar ◽  
Gregory D. Thiabaud ◽  
Adam C. Sedgwick ◽  
...  

The reaction between dipyriamethyrin and copper(II) acetate [Cu(OAc)2] afforded what is, to our knowledge, the first transition metal-dipyriamethyrin complex. Molecular and electronic characterization of this binuclear Cu(II) complex via EPR, UV-vis, and single crystal X-ray diffraction analysis revealed marked differences between the present constructs and previously reported binuclear copper(II) hexaphyrin species. UV-vis titration analyses provided evidence for a homotropic positive allosteric effect, wherein the binuclear species is formed without significant intermediacy of a monomeric complex.


RSC Advances ◽  
2020 ◽  
Vol 10 (39) ◽  
pp. 23286-23296
Author(s):  
Promita Nandy ◽  
Soumen Singha ◽  
Neha Banyal ◽  
Sanjay Kumar ◽  
Kasturi Mukhopadhyay ◽  
...  

A monomeric complex of ZnII with ornidazole [Zn(Onz)2Cl2] decreases formation of the nitro-radical anion (R–NO2˙−), and this is realized by recording it in an enzyme assay using xanthine oxidase, which is a model nitro-reductase.


Sign in / Sign up

Export Citation Format

Share Document