Primäre und sekundäre Ethyl-und i-Propylsulfoniumsalze sowie Kristallstruktur von i-C3H7SH2+SbF6- [1]

1996 ◽  
Vol 51 (2) ◽  
pp. 277-285
Author(s):  
Rolf Minkwitz ◽  
Ulrike Lohmann ◽  
Hans Preut

Abstract The synthesis of salts of the type RnSH3-n+MF6- (R = C2H5, i-C3H7; n = 1, 2; M = As, Sb) by protonation of the corresponding thiols and sulfides in the superacid systems HF/MF5 is reported. The salts have been characterized by vibrational and NMR spectroscopic methods. Isopropylsulfonium hexafluoroantimonate is the first known example of a sulfonium salt, for which a SH bond distance has been determined by a crystal structure analysis, i-C3H7SH2+SbF6- crystallizes in the monoclinic space group P21/m with a = 568.0(4), b = 801.1(6), c = 1019.7(8) pm, β = 82.63(6) °, with two formula units per unit cell.

1997 ◽  
Vol 52 (6) ◽  
pp. 707-710
Author(s):  
M. Jansen ◽  
S. Bzik

Bis[tris(methylamino)silyl]methane (1) and bis[tris(phenylamino)silyl]methane (2) have been synthesized as potential precursors of porous oxygen-free solids by the reaction of bis(trichlorsilyl)methane with methylamine and with lithiated aniline, respectively. Compound 2 was characterized by a crystal structure analysis. It crystallizes in the monoclinic space group P 21 ,/c with the unit cell parameters a= 10.963(2),b= 17.801(2), c = 17.557(2) Å, β = 97.96(2)° and Z = 4 (R1, = 4,4 %, wR2 = 9,8 %, 5950 independent reflections).


1991 ◽  
Vol 46 (9) ◽  
pp. 1219-1222 ◽  
Author(s):  
Hans Möhrle ◽  
Karin Bluhme-Hensen ◽  
Birgit Middelhauve ◽  
Dietrich Mootz ◽  
Hartmut Wunderlich

Substituted amidoximes when reacted with oxybis(diphenylborane) do not yield ester chelates as main products but boron heterocycles. The compound obtained from p-toluamidoxime was found by crystal structure analysis to be 2-phenyl-4-(4-methylphenyl)-2,3-dihydro-1,3,5,2-oxadiazaborol (9). The conformation of the molecule is determined by angles of 29.1 and 24.4° between the planes of adjacent rings. Except N–O all bonds in the heterocyclic ring contain significant π character. Molecules are linked to chains by a weak bifurcated hydrogen bond. 9 crystallizes with the monoclinic space group P21/c, Ζ = 4, a = 5.574(2), b = 18.274(4), c = 12.754(4) Å, β = 106.41(2)°. Refinement of 227 parameters using 1709 observed reflections converged at R = 0.037.


1988 ◽  
Vol 43 (5) ◽  
pp. 634-636 ◽  
Author(s):  
Dieter Fenske ◽  
Achim Hollnagel ◽  
Kurt Merzweiler

[(η3-C4H7)PdCl]2 reacts with Se(SiMe3)2 to form [(η3-C4H7)6Pd6Se3] (1). 1 has been characterized by X-ray crystal structure analysis. It contains a distorted trigonal prismatic Pd6-cluster. Three faces of the Pd-prism are occupied by μ4-Se ligands. 1 crystallizes in the space group Pnma with 4 formula units per unit cell. The lattice constants at 200 K are: a = 1175.1(8), b = 1611.4(12), c = 1720.3(12) pm.


1988 ◽  
Vol 43 (5) ◽  
pp. 557-560 ◽  
Author(s):  
Walter Abriel ◽  
Hartmut Ehrhardt

Abstract The title compound contains the anions [TeBr3Cl3]2- and [TeBr4Cl2]2- in a 1:1 ratio. The corresponding point symmetries, detected by Raman spectroscopic methods, are 3 m and 4/mmm, respectively. The crystal structure analysis exhibits a random distribution of these anions: K2PtCl6- type, space group Fm3̅m with a = 10.4602(5) Å and Z = 4, final R = 0.036 from 178 F0 (MoKα).


1996 ◽  
Vol 51 (1) ◽  
pp. 133-138 ◽  
Author(s):  
Rolf Minkwitz ◽  
Ulrike Lohmann ◽  
Hans Preut

Abstract CH3S(0)C1 reacts in HF as solvent with MF5 (M = As, Sb) to give products CH3S(Cl)OMF5 (M = As, Sb). The new compounds are stable below 253 K and were charac­ terized by Raman and NMR spectroscopy.In addition, the crystal structure of CH3S(Cl)OSbCl5 has been determinated. The complex crystallizes in the monoclinic space group P21/n with a = 644.3(5), b = 1905.9(14), c = 900.0(7) pm, β = 99.27(6)° with four formula units per unit cell.


1974 ◽  
Vol 29 (5) ◽  
pp. 831
Author(s):  
J. Haase ◽  
P. Widmann

Abstract The crystal structure of perchlorobenzocyclobutene (β-C8Cl8) has been investigated and solved by means of the unusual Patterson projection along the axis of twinning, by which the space group had been determined. As a result of the crystal structure analysis the constitution of the molecule, derived by J. Brandmüller and E. Ziegler from spectroscopic measurements, has been found to be true.


1985 ◽  
Vol 40 (1) ◽  
pp. 13-18 ◽  
Author(s):  
Kay Jansen ◽  
Kurt Dehnicke ◽  
Dieter Fenske

The syntheses and IR spectra of the complexes [Mo2(O2C-Ph)4X2]2⊖ with X = N3, CI, Br and the counter ion PPh4⊕ are reported. The azido and the bromo complexes are obtained from a solution of [Mo2(O2CPh)4] with PPh4N3 in pyridine or by reaction with PPh4Br in CH2Br2, respectively. When (PPh4)2[Mo2(O2CPh)4(N3)2] is dissolved in CH2Cl2, nitrogen is evolved and the complex with X = CI is obtained. The crystal structure of (PPh4)2[Mo2(O2CPh)4Cl2] · 2CH2Cl2 was determined from X-ray diffraction data (5676 observed independent reflexions, R = 0.042). It crystallizes in the monoclinic space group P21/n with four formula units per unit cell; the lattice constants are a = 1549, b = 1400, c = 1648 pm, β = 94.6°. The centrosymmetric [Mo2(O2CPh)4Cl2]2⊖ ion has a rather short Mo-Mo bond of 213 pm, whereas the MoCl bonds are very long (288 pm)


1994 ◽  
Vol 38 ◽  
pp. 749-755 ◽  
Author(s):  
A. Olowe

Abstract Pyroaurite and sjogrenite belong to the group of sandwiched lamellar metal hydroxides which have a fixed metallic ions MII:MIII ratio for a particular class. Their crystal structure consists of positively charged metal hydroxide blocks intercalated with negatively charged interlayers. The atomic positions for the interlayer are definite for a particular class. The exact chemical formula of the pyroaurite class is determined from crystal structure analysis to be MII 6MIII 2(OH)16-CO3-4.5H2O; it crystallizes in the space group Rm with a = 12.4376 Å and c = 23.4126 Å. Sjogrenite, MII 6 MIII 2(OH)16-CO3-4H2O crystallizes in the space group P63/mcm. The crystallogiraphy and structural relationship between these classes are discussed. Previous discussion on these compounds did not give any conclusion on the exact chemical formula and the atomic positions.


1990 ◽  
Vol 45 (12) ◽  
pp. 1637-1642 ◽  
Author(s):  
Rolf Minkwitz ◽  
Andreas Kornath ◽  
Renate Krause ◽  
Hans Preut

The preparation of the stable compounds [(CH3)2SSCl]+SbF6- and [(CH3)2,SSSCl]+SbF6- from [(CH3)2SH]+SbF6- and SCl2 and S2Cl2, resp., is reported.The isomer [(CH3)(Cl)S–SCH3]+SbCl6- is prepared from [SCl3]+SbCl6- and CH3SH in the molar ratio 1:2. For this salt a crystal structure analysis was carried out (Space group P212121, Z = 4, a = 750.1(4), b = 1133.7(3), c = 1614.8(3) pm).


1993 ◽  
Vol 48 (7) ◽  
pp. 1009-1012 ◽  
Author(s):  
Kurt Merzweiler ◽  
Harald Kraus

[{Cp(CO)2Fe}SnCl3] reacts with Na2Se in THF to form the compound [{Cp(CO)2Fe}3ClSn3Se4] 1. 1 crystallizes in the monoclinic space group P21/n with 4 formula units per unit cell. The lattice constants are α = 1435.2(7), b = 1124.4(4), c = 1972.7(12) pm, β = 94.59(4)°. According to the X-ray structure determination 1 contains a bicyclic Sn3Se4 framework.


Sign in / Sign up

Export Citation Format

Share Document