O n the Mechanism of Inactivation and ATP-Dependent Reactivation of Rat Liver Tyrosine Aminotransferase

1977 ◽  
Vol 32 (9-10) ◽  
pp. 777-780 ◽  
Author(s):  
Hans-Heinrich Hamm ◽  
Werner Seubert

Abstract The mechanism of in vitro inactivation and ATP-dependent rapid reactivation of rat liver tyrosine aminotransferase by a membrane-bound system from rat liver and kidney cortex and the nucleotide specificity of this process was investigated using partially purified tyrosine amino­ transferase as a substrate. Adenosine 5′-triphosphate (ATP) could be replaced by guanosine 5′-tri-phosphate (GTP), whereas inosine 5′-triphosphate (ITP) was less effective. During reactivation [γ-32P]A T P was incorporated into the enzyme and not excorporated by incubation of the labeled enzyme with excess non-radioative ATP. Inactivation of labeled tyrosine aminotransferase by a particulate fraction led to a decrease protein-bound radioactivity concomitant with an increase of [32P] orthophosphate. This points to a phosphorylation and dephosphorylation mechanism in the regulation of tyrosine aminotransferase activity.

1961 ◽  
Vol 44 (3) ◽  
pp. 555-569 ◽  
Author(s):  
Ingrith J. Deyrup ◽  
R. E. Davies

Kidney cortex slices incubated in vitro at 0°C. accumulate radiosulfate from the incubation medium. This process differs from the previously described uptake of radiosulfate by renal tissue incubated at 38°C., for instance, in the lesser sensitivity of the uptake at 0°C. to differential effects of Na+ as compared with K+ ions, and of sucrose as compared with glucose. Phlorizin inhibits radiosulfate accumulation at 0°C., whereas it enhances the uptake at 38°C. Effects of the cations K+ and Na+ and of phlorizin at temperatures intermediate between 0° and 38°C. have been studied. Parallels have been noted between the accumulative processes for radiosulfate of kidney slices maintained at 0°C. and of mitochondria isolated from rat liver and kidney cortex. These similarities may be attributed to an important role of radiosulfate uptake by mitochondria in slice accumulation of radiosulfate in the cold.


1975 ◽  
Vol 150 (3) ◽  
pp. 329-333 ◽  
Author(s):  
R Hannah ◽  
M K Sahib

Rat liver tyrosine aminotransferase was purified 200-fold and an antiserum raised against it in rabbits. 2. Hepatic tyrosine aminotransferase activity was increased fourfold by tyrosine, twofold by tetracycline, 2.5-fold by cortisone 21-acetate and ninefold by a combination of tyrosine and cortisol administered intraperitoneally to rats. 3. Radioimmunoassay with 14C-labelled tyrosine aminotransferase, in conjunction with rabbit antiserum against the enzyme, revealed that cortisol stimulates the synthesis of the enzyme de novo, but that tetracycline has no such effect. 4. Incubation of rat liver homogenates with purified tyrosine aminotransferase in vitro leads to a rapid inactivation of the enzyme, which tetracycline partially inhibits. 5. The inactivation is brought about by intact lysosomes, and the addition of 10mM-cysteine increases the rate of enzyme inactivation, which is further markedly increased by 10mM-Mg2+ and 10mM-ATP. Here again tetracycline partially inhibits the decay rate, leading to the inference that the increase of tyrosine aminotransferase activity in vivo by tetracycline is brought about by the latter inhibiting the lysosomal catheptic action.


2003 ◽  
Vol 55 (1-2) ◽  
pp. 3-7 ◽  
Author(s):  
Jadranka Dundjerski ◽  
Jelena Predic ◽  
Aleksandra Cvoro ◽  
Gordana Matic

This study was focused on Cd effects on basal and dexamethasone-induced tyrosine aminotransferase (TAT) activity in the rat liver cytosol. Cadmium (Cd), applied in the dose of 2 mg/kg b.w., stimulated both TAT activity and its induction by dexamethasone, inducing the most prominent alterations 24 h after administration. Doses lower than 2 mg Cd/kg b.w. were ineffective while the higher ones (3 and 4 mg Cd/kg b.w) led to the changes similar to those reached by 2 mg Cd/kg. The in vitro application of different Cd concentrations to the liver cytosol rendered the enzyme activity unchanged suggesting that the metal acted at the level of TAT gene transcription.


1972 ◽  
Vol 126 (2) ◽  
pp. 347-350 ◽  
Author(s):  
A. A.-B. Badawy

1. Salicylate, in concentrations of 0.25mm and above, enhances the basal activity of tyrosine–2-oxoglutarate aminotransferase in homogenates of rat liver incubated in the absence of added pyridoxal 5′-phosphate (endogenous activity). The effect is decreased by increasing the concentration of the cofactor. 2. The intraperitoneal administration of sodium salicylate enhances the activity of rat liver tyrosine aminotransferase; the major effect during the first hour being on the enzyme in the absence of added pyridoxal phosphate. Actinomycin D prevents the induction of the enzyme by cortisol and tryptophan. Induction by pyridoxine or salicylate is 50% inhibited by actinomycin D. The effects of the injections of various combinations of cortisol, pyridoxine and salicylate were also studied in the absence or presence of actinomycin D. 3. It is suggested that salicylate induces rat liver tyrosine aminotransferase by displacing its protein-bound cofactor and that a cofactor-type induction of the hepatic enzyme occurs in pyridoxine-treated rats.


1980 ◽  
Vol 186 (3) ◽  
pp. 755-761 ◽  
Author(s):  
A A B Badawy ◽  
B M Snape ◽  
M Evans

1. Acute ethanol administration causes a biphasic change in rat liver tyrosine aminotransferase activity. 2. The initial decrease is significant with a 200 mg/kg dose of ethanol, is prevented by adrenoceptor-blocking agnets and by reserpine, but not by inhibitors of ethanol metabolism, and exhibits many of the characteristics of the inhibition caused by noradrenaline. 3. The subsequent enhancement of the enzyme activity by ethanol is not associated with stabilization of the enzyme, but is sensitive to actinomycin D and cycloheximide. 4. It is suggested that the initial decrease in aminotransferase activity is caused by the release of catecholamines, whereas the subsequent enhancement may be related to the release of glucocorticoids.


1977 ◽  
Vol 168 (1) ◽  
pp. 1-8 ◽  
Author(s):  
J C Ramsey ◽  
W J Steele

Free loosely bound and tightly bound polyribosomes were separated from rat liver homogenate by salt extraction followed by differential centrifugation, and several of their structural and functional properties were compared to resolve the existence of loosely bound polyribosomes and verify the specificity of the separation. The free and loosely bound polyribosomes have similar sedimentation profiles and polyribosome contents, their subunit proteins have similar electrophoretic patterns and their products of protein synthesis in vitro show a close correspondence in size and amounts synthesized. In contrast, the tightly bound polyribosomes have different properties from those of the free and loosely bound polyribosomes; their average size is significantly smaller; their polyribosome content is higher; their 60 S-subunit proteins lack two components and contain four or more components not found elsewhere; their products of protein synthesis in vitro differ in size and amounts synthesized. These observations show that rat liver membranes entrap a large fraction of the free polyribosomes at low salt concentrations and that these polyribosomes are similar to those of the free-polyribosome fraction and are different from those of the tightly bound polyribosome fraction in size, structure and function.


1964 ◽  
Vol 42 (9) ◽  
pp. 1325-1330 ◽  
Author(s):  
René Charbonneau ◽  
Louis Berlinguet

The role of N-carbamyl, N-acetyl, and L-glutamic acids with and without fumaric acid on the "in vitro" synthesis of citrulline was studied by using a particulate fraction obtained from a rat liver homogenate and a partially purified citrulline-synthesizing enzyme system. In the presence of a particulate fraction of rat liver homogenate, N-carbamyl and N-acetyl-L-glutamic acids are unable to replace L-glutamic acid, which is essential for citrulline biosynthesis. However, in the presence of fumaric acid, they both give a better synthesis of citrulline than L-glutamic acid alone. It is postulated that the acyl derivatives serve only in the transport of "activated CO2" whereas fumaric acid enters the citric acid to furnish the essential ATP molecules. Glutamic acid would be able to perform both functions. However, in the presence of a system containing partially purified citrulline-synthesizing enzymes, L-glutamic acid is unable to replace N-carbamyl and N-acetyl-L-glutamic acids with or without fumaric acid. In such a system, L-glutamic acid cannot serve in the transport of "activated CO2". It is postulated that L-glutamic acid must be acetylated prior to its utilization in this respect.With the particulate fraction of rat liver homogenate, N-allyl aspartic acid inhibits totally the synthesis of citrulline both in the presence and absence of fumaric acid with or without glutamic or N-acetyl glutamic acids. It probably interferes with the transport of "activated CO2".


Sign in / Sign up

Export Citation Format

Share Document