Synthesis and Antifungal Activities of 2-(N-Arylsulfonylindol-3-yl)-3-aryl-1,3-thiazinan-4-ones

2013 ◽  
Vol 68 (3-4) ◽  
pp. 77-81 ◽  
Author(s):  
Huan Qu ◽  
Rui Zhang ◽  
Ying Hu ◽  
Yazhen Ke ◽  
Zhinan Gao ◽  
...  

4j A series of 2-(N-arylsulfonylindol-3-yl)-3-aryl-1,3-thiazinan-4-one derivatives were synthesized and evaluated in vitro against seven phytopathogenic fungi, namely Fusarium graminearum, Alternaria solani, Fusarium oxysporium f. sp. vasinfectum, Alternaria brassicae, Valsa mali, Alternaria alternata, and Pyricularia oryzae. Among all derivatives, especially compound exhibited a potential antifungal activity against four phytopathogenic fungi.

2010 ◽  
Vol 65 (7-8) ◽  
pp. 437-439 ◽  
Author(s):  
Hui Xu ◽  
Qin Wang ◽  
Wen-Bin Yang

Nine indole derivatives were evaluated in vitro against Fusarium graminearum, Alternaria alternata, Helminthosporium sorokinianum, Pyricularia oryzae, Fusarium oxysporum f. sp. vasinfectum, Fusarium oxysporum f. sp. cucumarinum, and Alternaria brassicae. Most of the compounds were found to possess antifungal activities. Especially compounds 2, 5, 8, and 9 exhibited broad-spectrum antifungal activities against the above-mentioned seven phytopathogenic fungi, and showed more potent activities than hymexazole, a commercial agricultural fungicide.


2010 ◽  
Vol 65 (7-8) ◽  
pp. 433-436
Author(s):  
Hui Xu ◽  
Huan Qu

Several 2,6-bis-(un)substituted phenoxymethylpyridines were synthesized and evaluated in vitro against Fusarium graminearum, Helminthosporium sorokinianum, Alternaria brassicae, Alternaria alternata, and Fusarium oxysporum f. sp. vasinfectum. Among all derivatives, compound 3 a exhibited a broad-spectrum antifungal activity against the five phytopathogenic fungi.


2015 ◽  
Vol 80 (11) ◽  
pp. 1367-1374 ◽  
Author(s):  
Yu-Wen Li ◽  
Shu-Tao Li

A series of novel dithiocarbamate derivatives bearing amide moiety 3a-3i and 4a-4i were synthesized by a facile method, and the structures of these derivatives were confirmed by 1H NMR, 13C NMR, elemental analysis and high-resolution mass spectrometry (HRMS). Their antifungal activity against five phytopathogenic fungi were evaluated, and the results showed that most of the target compounds displayed low antifungal activity in vitro against Gibberella zeae, Cytospora sp., Collectotrichum gloeosporioides, Alternaria solani, and Fusarium solani at concentration of 100 mg/L. Compound 4f and 4g exhibited significant activity against Alternaria solani and Collectotrichum gloeosporioides, respectively.


Molecules ◽  
2021 ◽  
Vol 26 (2) ◽  
pp. 383
Author(s):  
Shan Yang ◽  
Tienan Wang ◽  
Yanan Zhou ◽  
Li Shi ◽  
Aidang Lu ◽  
...  

Based on the structure of the natural product cysteine, a series of thiazolidine-4-carboxylic acids were designed and synthesized. All target compounds bearing thiazolidine-4-carboxylic acid were characterized by 1H-NMR, 13C-NMR, and HRMS techniques. The antiviral and antifungal activities of cysteine and its derivatives were evaluated in vitro and in vivo. The results of anti-TMV activity revealed that all compounds exhibited moderate to excellent activities against tobacco mosaic virus (TMV) at the concentration of 500 μg/mL. The compounds cysteine (1), 3–4, 7, 10, 13, 20,23, and 24 displayed higher anti-TMV activities than the commercial plant virucide ribavirin (inhibitory rate: 40, 40, and 38% at 500 μg/mL for inactivation, curative, and protection activity in vivo, respectively), especially compound 3 (inhibitory rate: 51%, 47%, and 49% at 500 μg/mL for inactivation, curative, and protection activity in vivo, respectively) with excellent antiviral activity emerged as a new antiviral candidate. Antiviral mechanism research by TEM exhibited that compound 3 could inhibit virus assembly by aggregated the 20S protein disk. Molecular docking results revealed that compound 3 with higher antiviral activities than that of compound 24 did show stronger interaction with TMV CP. Further fungicidal activity tests against 14 kinds of phytopathogenic fungi revealed that these cysteine derivatives displayed broad-spectrum fungicidal activities. Compound 16 exhibited higher antifungal activities against Cercospora arachidicola Hori and Alternaria solani than commercial fungicides carbendazim and chlorothalonil, which emerged as a new candidate for fungicidal research.


2019 ◽  
Vol 15 (7) ◽  
pp. 662-671 ◽  
Author(s):  
Nabila A. Sebaa ◽  
Amina T. Zatla ◽  
Mohammed E.A. Dib ◽  
Boufeldja Tabti ◽  
Jean Costa ◽  
...  

Background: Bellota species are used to treat various diseases in traditional folk medicine. Objectives: This study aimed to chemically characterize the essential oils and the hydrosol extract and regional specificity of the major components of Ballota nigra essential oil and to evaluate their in vitro and in vivo antifungal activities. Methods: Essential oils were obtained by a Clevenger-type apparatus and analyzed by using Gas Chromatography (GC) and Gas Chromatography Mass Spectroscopy (GC/MS). The antifungal activities were tested to three phytopathogenic stains (Penicillium expansum, Aspergillus niger and Alternaria alternata). Results: Altogether, 38 compounds were identified in the essential oils, representing 92.1-96.8% of the total oil composition. Their main constituents were E-β-caryophyllene (4.8-24.6%), E-β-farnesene (3.3-22.9%), β-bisabolene (7.6-30.2%), α-humulene (2.1-13.3%) and geranyl linalool (1.1-8.2%). The statistical methods deployed confirmed that there is a relation between the essential oil compositions and the harvest locations. Hydrosol extract was constituted by seven components, represented principally by methyl eugenol (75.2%) and caryophyllene oxide (12.5%). The results of in vitro antifungal activity with essential oil and hydrosol extract have shown very interesting antifungal activities on Penicillium expansum and Alternaria alternata strains with percentage reductions up to 80%. Additionally, in in vivo assays, Ballota nigra essential oil and hydrosol extract significantly reduce decay in artificially inoculated tomato by Alternaria alternata. Conclusion: The essential oil and hydrosol extract can be used as a potential source of sustainable eco-friendly botanical fungicides to protect stored tomatoes from pathogens, saprophytic fungi causing bio-deterioration to a variety of food commodities.


Holzforschung ◽  
2006 ◽  
Vol 60 (1) ◽  
pp. 20-23 ◽  
Author(s):  
Hisayoshi Kofujita ◽  
Youji Fujino ◽  
Michikazu Ota ◽  
Kouetsu Takahashi

Abstract Bioassay-guided isolation of compounds from n-hexane extracts of the bark of Cryptomeria japonica resulted in six abietane- and two pimarane-type diterpenoids, including a new compound, 12-methoxy-6α,11-dihydroxyabieta-8,11,13-triene. The structure of the new substance was established by spectral analyses and comparison with related compounds. The antifungal activities of these diterpenes were evaluated against the phytopathogenic fungi Alternaria alternata, Pyricularia oryzae, Rhizoctonia solani and Fusarium oxysporum. The diterpenes showed moderate antifungal activity against the fungi examined.


Molecules ◽  
2012 ◽  
Vol 17 (11) ◽  
pp. 13026-13035 ◽  
Author(s):  
Xin-Juan Yang ◽  
Fang Miao ◽  
Yao Yao ◽  
Fang-Jun Cao ◽  
Rui Yang ◽  
...  

2008 ◽  
Vol 63 (9-10) ◽  
pp. 653-657 ◽  
Author(s):  
Dolores Pérez-Laínez ◽  
Rosario García-Mateos ◽  
Ruben San Miguel-Chávez ◽  
Marcos Soto-Hernández ◽  
Enrique Rodríguez-Pérez ◽  
...  

Calia secundiflora (Ortega) Yakovlev (Fabaceae) is considered a medicinal plant in Mexico but has scarcely been used because of the toxicity of its quinolizidine alkaloids. Several quinolizidine alkaloids have shown bactericidal, nematicidal, and fungicidal activities. The purpose of this study was to identify the alkaloids in the seeds and evaluate the activity of the organic extract on several phytopathogenic fungi and bacteria. An in vitro bioassay was conducted with species of the following phytopathogenic fungi: Alternaria solani, Fusarium oxysporum and Monilia fructicola; and of the following bacteria Pseudomonas sp., Xanthomonas campestris and Erwinia carotovora. Cytisine, lupinine, anagyrine, sparteine, N-methylcytisine, 5,6-dehydrolupanine, and lupanine were identified by liquid chromatography-mass spectrometry in the extract of seeds; the most abundant compound of the extract was cytisine. It was observed that the crude extract of Calia secundiflora was moderately active on bacteria and more potent on phytopathogenic fungi. In contrast cytisine showed the opposite effects.


Sign in / Sign up

Export Citation Format

Share Document