Ethyl p -coumarate exerts antifungal activity in vitro and in vivo against fruit Alternaria alternata via membrane-targeted mechanism

2018 ◽  
Vol 278 ◽  
pp. 26-35 ◽  
Author(s):  
Wusun Li ◽  
Shuzhi Yuan ◽  
Jing Sun ◽  
Qianqian Li ◽  
Weibo Jiang ◽  
...  
2019 ◽  
Vol 15 (7) ◽  
pp. 662-671 ◽  
Author(s):  
Nabila A. Sebaa ◽  
Amina T. Zatla ◽  
Mohammed E.A. Dib ◽  
Boufeldja Tabti ◽  
Jean Costa ◽  
...  

Background: Bellota species are used to treat various diseases in traditional folk medicine. Objectives: This study aimed to chemically characterize the essential oils and the hydrosol extract and regional specificity of the major components of Ballota nigra essential oil and to evaluate their in vitro and in vivo antifungal activities. Methods: Essential oils were obtained by a Clevenger-type apparatus and analyzed by using Gas Chromatography (GC) and Gas Chromatography Mass Spectroscopy (GC/MS). The antifungal activities were tested to three phytopathogenic stains (Penicillium expansum, Aspergillus niger and Alternaria alternata). Results: Altogether, 38 compounds were identified in the essential oils, representing 92.1-96.8% of the total oil composition. Their main constituents were E-β-caryophyllene (4.8-24.6%), E-β-farnesene (3.3-22.9%), β-bisabolene (7.6-30.2%), α-humulene (2.1-13.3%) and geranyl linalool (1.1-8.2%). The statistical methods deployed confirmed that there is a relation between the essential oil compositions and the harvest locations. Hydrosol extract was constituted by seven components, represented principally by methyl eugenol (75.2%) and caryophyllene oxide (12.5%). The results of in vitro antifungal activity with essential oil and hydrosol extract have shown very interesting antifungal activities on Penicillium expansum and Alternaria alternata strains with percentage reductions up to 80%. Additionally, in in vivo assays, Ballota nigra essential oil and hydrosol extract significantly reduce decay in artificially inoculated tomato by Alternaria alternata. Conclusion: The essential oil and hydrosol extract can be used as a potential source of sustainable eco-friendly botanical fungicides to protect stored tomatoes from pathogens, saprophytic fungi causing bio-deterioration to a variety of food commodities.


2020 ◽  
Vol 18 (3) ◽  
pp. 285-293
Author(s):  
Amina Tabet Zatla ◽  
Imane Mami ◽  
Mohammed El Amine Dib ◽  
Mohammed El Amine Sifi

Background: The microorganisms such as Penicillium expansum and Botrytis cinerea are wellknown pathogens in apples during postharvest. So, to protect apples from these pathogens, chemical control methods were exercised. Introduction: The main objective of this work was to study the chemical composition and the in-vitro and in-vivo antifungal properties of essential oil and hydrosol extract of Marrubium vulgare. Methods: In this work, the air-dried aerial parts of Marrubium vulgare were hydrodistilled in a Clevengertype apparatus. The essential oil and hydrosol extract isolated were analyzed using Gas Chromatography (GC) and Mass Spectrometry (GC/MS). The in-vitro antifungal activity of the both extracts was investigated against Botrytis cinerea, Penicillium expansum and Alternaria alternata fungi using radial growth technique. The effect of the essential oil and hydrosol extract on disease development of apple caused by Penicillium expansum in the in-vivo conditions was assessed. Results: The essential oil of Marrubium vulgare was characterized principally by E-β-caryophyllene (23.5%), E-β-farnesene (21%), α-humulene (14.8%), β-bisabolene (11.1%), caryophyllene oxide (6.8%) and phytol (3.1%). While, the methyl-eugenol (65.5%), α-Bisabolol (12.5%), linalool (6.5%) and caryophyllene oxide (6.2%) were the major compounds of hydrosol extract. The result of in-vitro antifungal activity of hydrosol extract showed an interesting antifungal inhibition against Botrytis cinerea, Penicillium expansum and Alternaria alternata with percentage inhibition ranging from 77% to 89% at low concentration of 0.15 mL/L. The essential oil was found to inhibit the growth of Penicillium expansum in a dose-dependent manner, with a percentage inhibition of 100% at 30 mL/L. Furthermore, essential oil and hydrosol extract have demonstrated promising in-vivo antifungal activity to control infection of apples by Penicillium expansum up to 25th day of storage, compared with the control. Conclusion: The preventive and protective effects of essential oil and hydrosol extract could be exploited as an ideal alternative to synthetic fungicides for using the protection of stored apples from fungal phytopathogens.


2020 ◽  
Vol 8 (10) ◽  
pp. 1627
Author(s):  
Tecla Ciociola ◽  
Pier Paolo Zanello ◽  
Tiziana D’Adda ◽  
Serena Galati ◽  
Stefania Conti ◽  
...  

The growing problem of antimicrobial resistance highlights the need for alternative strategies to combat infections. From this perspective, there is a considerable interest in natural molecules obtained from different sources, which are shown to be active against microorganisms, either alone or in association with conventional drugs. In this paper, peptides with the same sequence of fragments, found in human serum, derived from physiological proteins, were evaluated for their antifungal activity. A 13-residue peptide, representing the 597–609 fragment within the albumin C-terminus, was proved to exert a fungicidal activity in vitro against pathogenic yeasts and a therapeutic effect in vivo in the experimental model of candidal infection in Galleria mellonella. Studies by confocal microscopy and transmission and scanning electron microscopy demonstrated that the peptide penetrates and accumulates in Candida albicans cells, causing gross morphological alterations in cellular structure. These findings add albumin to the group of proteins, which already includes hemoglobin and antibodies, that could give rise to cryptic antimicrobial fragments, and could suggest their role in anti-infective homeostasis. The study of bioactive fragments from serum proteins could open interesting perspectives for the development of new antimicrobial molecules derived by natural sources.


2021 ◽  
Vol 7 (3) ◽  
pp. 195
Author(s):  
Amr H. Hashem ◽  
Amer M. Abdelaziz ◽  
Ahmed A. Askar ◽  
Hossam M. Fouda ◽  
Ahmed M. A. Khalil ◽  
...  

Rhizoctonia root-rot disease causes severe economic losses in a wide range of crops, including Vicia faba worldwide. Currently, biosynthesized nanoparticles have become super-growth promoters as well as antifungal agents. In this study, biosynthesized selenium nanoparticles (Se-NPs) have been examined as growth promoters as well as antifungal agents against Rhizoctonia solani RCMB 031001 in vitro and in vivo. Se-NPs were synthesized biologically by Bacillus megaterium ATCC 55000 and characterized by using UV-Vis spectroscopy, XRD, dynamic light scattering (DLS), and transmission electron microscopy (TEM) imaging. TEM and DLS images showed that Se-NPs are mono-dispersed spheres with a mean diameter of 41.2 nm. Se-NPs improved healthy Vicia faba cv. Giza 716 seed germination, morphological, metabolic indicators, and yield. Furthermore, Se-NPs exhibited influential antifungal activity against R. solani in vitro as well as in vivo. Results revealed that minimum inhibition and minimum fungicidal concentrations of Se-NPs were 0.0625 and 1 mM, respectively. Moreover, Se-NPs were able to decrease the pre-and post-emergence of R. solani damping-off and minimize the severity of root rot disease. The most effective treatment method is found when soaking and spraying were used with each other followed by spraying and then soaking individually. Likewise, Se-NPs improve morphological and metabolic indicators and yield significantly compared with infected control. In conclusion, biosynthesized Se-NPs by B. megaterium ATCC 55000 are a promising and effective agent against R. solani damping-off and root rot diseases in Vicia faba as well as plant growth inducer.


2021 ◽  
Author(s):  
Rodrigo L Fabri ◽  
Jhamine C O Freitas ◽  
Ari S O Lemos ◽  
Lara M Campos ◽  
Irley O M Diniz ◽  
...  

Abstract Spilanthol is a bioactive alkylamide from the native Amazon plant species, Acmella oleracea. However, antifungal activities of spilanthol and its application to the therapeutic treatment of candidiasis remains to be explored. This study sought to evaluate the in vitro and in vivo antifungal activity of spilanthol previously isolated from A. oleracea (spilanthol(AcO)) against Candida albicans ATCC® 10231™, a multidrug-resistant fungal strain. Microdilution methods were used to determine inhibitory and fungicidal concentrations of spilanthol(AcO). In planktonic cultures, the fungal growth kinetics, yeast cell metabolic activity, cell membrane permeability and cell wall integrity were investigated. The effect of spilanthol(AcO) on the proliferation and adhesion of fungal biofilms was evaluated by whole slide imaging and scanning electron microscopy. The biochemical composition of the biofilm matrix was also analyzed. In parallel, spilanthol(AcO) was tested in vivo in an experimental vulvovaginal candidiasis model. Our in vitro analyses in C. albicans planktonic cultures detected a significant inhibitory effect of spilanthol(AcO), which affects both yeast cell membrane and cell wall integrity, interfering with the fungus growth. C. albicans biofilm proliferation and adhesion, as well as, carbohydrates and DNA in biofilm matrix were reduced after spilanthol(AcO) treatment. Moreover, infected rats treated with spilanthol(AcO) showed consistent reduction of both fungal burden and inflammatory processes compared to the untreated animals. Altogether, our findings demonstrated that spilanthol(AcO) is an bioactive compound against planktonic and biofilm forms of a multidrug resistant C. albicans strain. Furthermore, spilanthol(AcO) can be potentially considered for therapeutical treatment of vulvovaginal candidiasis caused by C. albicans. Lay Abstract This study sought to evaluate the antifungal activity of spilanthol against Candida albicans ATCC® 10 231™, a multidrug-resistant fungal strain. Our findings demonstrated that spilanthol(AcO) can be potentially considered for therapeutical treatment of vulvovaginal candidiasis caused by C. albicans.


Author(s):  
Leydi Miguel-Ferrer ◽  
Omar Romero-Arenas ◽  
Petra Andrade-Hoyos ◽  
Primo Sánchez-Morales ◽  
José Antonio Rivera-Tapia ◽  
...  

El chile es la segunda hortaliza de mayor producción en México. El objetivo de la investigación fue evaluar la actividad antagónica <em>in vitro</em> e <em>in vivo</em> de <em>Trichoderma harzianum</em> (T-H4) y <em>T. koningiopsis</em> (T-K11) <em>versus Fusarium solani</em> (MX-MIC 798) en la germinación y establecimiento de plántula de chile Miahuateco. Se utilizó la técnica de cultivo dual para determinar el porcentaje de inhibición de crecimiento radial (PICR) de la cepa MX-MIC 798. Además, se analizó el porcentaje de germinación en semillas de chile Miahuateco en vivero, así como la mortalidad de plántulas y grado de severidad a los 40 días después del trasplante (ddt) en Santa María Tecomavaca, Oaxaca, a través de biocontrol y control químico (Mancozeb 80®). La cepa T-H4 presentó el nivel antagónico PICR más alto (53.3%) <em>in vitro</em> y clase II en la escala de Bell, asimismo obtuvo 82% de germinación en semillas de chile Miahuateco en vivero y 48% de mortalidad en campo; de manera que igualó al control químico y superó a <em>T. koningiopsis</em> T-K11. La actividad antifúngica de <em>Trichoderma</em> spp., ofrecen una alternativa para el biocontrol de la marchitez y necrosis en raíz del cultivo de chile Miahuateco causada por <em>F. solani</em> MX-MIC 798.


Author(s):  
Janet Herrada ◽  
Ahmed Gamal ◽  
Lisa Long ◽  
Sonia P. Sanchez ◽  
Thomas S. McCormick ◽  
...  

Antifungal activity of AmBisome against Candida auris was determined in vitro and in vivo. AmBisome showed MIC50 and MIC90 values of 1 and 2 μg/mL, respectively. Unlike conventional amphotericin B, significant in vivo efficacy was observed in the AmBisome 7.5 mg/kg -treated group in survival and reduction of kidney tissue fungal burden compared to the untreated group. Our data shows that AmBisome shows significant antifungal activity against C. auris in vitro as well as in vivo.


Sign in / Sign up

Export Citation Format

Share Document