Assessing Accuracy of Exchange-Correlation Functionals for the Description of Atomic Excited States

2016 ◽  
Vol 230 (9) ◽  
Author(s):  
Marcin Makowski ◽  
Martyna Hanas

AbstractThe performance of exchange-correlation functionals for the description of atomic excitations is investigated. A benchmark set of excited states is constructed and experimental data is compared to Time-Dependent Density Functional Theory (TDDFT) calculations. The benchmark results show that for the selected group of functionals good accuracy may be achieved and the quality of predictions provided is competitive to computationally more demanding coupled-cluster approaches. Apart from testing the standard TDDFT approaches, also the role of self-interaction error plaguing DFT calculations and the adiabatic approximation to the exchange-correlation kernels is given some insight.

2021 ◽  
Author(s):  
Mojtaba Alipour ◽  
Parisa Fallahzadeh

Density functional theory formalisms of energy partitioning schemes are utilized to find out what energetic components govern interactions in halogenated complexes.


RSC Advances ◽  
2016 ◽  
Vol 6 (103) ◽  
pp. 101216-101225 ◽  
Author(s):  
Renan Augusto Pontes Ribeiro ◽  
Sergio Ricardo de Lazaro ◽  
Carlo Gatti

In this study, ab initio density functional theory calculations were performed on ATiO3 (A = Mn, Fe, Ni) materials for multiferroic applications.


Energies ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 150
Author(s):  
Yin-Pai Lin ◽  
Boris Polyakov ◽  
Edgars Butanovs ◽  
Aleksandr A. Popov ◽  
Maksim Sokolov ◽  
...  

Transition metal dichalcogenide (TMD) MoS2 and WS2 monolayers (MLs) deposited atop of crystalline zinc oxide (ZnO) and graphene-like ZnO (g-ZnO) substrates have been investigated by means of density functional theory (DFT) using PBE and GLLBSC exchange-correlation functionals. In this work, the electronic structure and optical properties of studied hybrid nanomaterials are described in view of the influence of ZnO substrates thickness on the MoS2@ZnO and WS2@ZnO two-dimensional (2D) nanocomposites. The thicker ZnO substrate not only triggers the decrease of the imaginary part of dielectric function relatively to more thinner g-ZnO but also results in the less accumulated charge density in the vicinity of the Mo and W atoms at the conduction band minimum. Based on the results of our calculations, we predict that MoS2 and WS2 monolayers placed at g-ZnO substrate yield essential enhancement of the photoabsorption in the visible region of solar spectra and, thus, can be used as a promising catalyst for photo-driven water splitting applications.


Computation ◽  
2019 ◽  
Vol 7 (4) ◽  
pp. 59
Author(s):  
Ágnes Nagy

A time-independent density functional theory for excited states of Coulomb systems has recently been proposed in a series of papers. It has been revealed that the Coulomb density determines not only its Hamiltonian, but the degree of excitation as well. A universal functional valid for any excited state has been constructed. The excited-state Kohn–Sham equations bear resemblance to those of the ground-state theory. In this paper, it is studied how the excited-state functionals behave under coordinate scaling. A few relations for the scaled exchange, correlation, exchange-correlation, and kinetic functionals are presented. These relations are expected to be advantageous for designing approximate functionals.


Sign in / Sign up

Export Citation Format

Share Document