scholarly journals Coordinate Scaling in Time-Independent Excited-State Density Functional Theory for Coulomb Systems

Computation ◽  
2019 ◽  
Vol 7 (4) ◽  
pp. 59
Author(s):  
Ágnes Nagy

A time-independent density functional theory for excited states of Coulomb systems has recently been proposed in a series of papers. It has been revealed that the Coulomb density determines not only its Hamiltonian, but the degree of excitation as well. A universal functional valid for any excited state has been constructed. The excited-state Kohn–Sham equations bear resemblance to those of the ground-state theory. In this paper, it is studied how the excited-state functionals behave under coordinate scaling. A few relations for the scaled exchange, correlation, exchange-correlation, and kinetic functionals are presented. These relations are expected to be advantageous for designing approximate functionals.

RSC Advances ◽  
2021 ◽  
Author(s):  
Guanzhao Wen ◽  
Xianshao Zou ◽  
Rong Hu ◽  
Jun Peng ◽  
Zhifeng Chen ◽  
...  

Ground- and excited-states properties of N2200 have been studied by steady-state and time-resolved spectroscopies as well as time-dependent density functional theory calculations.


2017 ◽  
Vol 19 (44) ◽  
pp. 30089-30096 ◽  
Author(s):  
Jie J. Bao ◽  
Laura Gagliardi ◽  
Donald G. Truhlar

MC-PDFT is more accurate than CR-EOM-CCSD(T) or TDDFT when averaged over the first four adiabatic excitation energies of CN.


2012 ◽  
Vol 388 (1) ◽  
pp. 012011 ◽  
Author(s):  
Manoj K Harbola ◽  
M Hemanadhan ◽  
Md Shamim ◽  
P Samal

2014 ◽  
Vol 92 (10) ◽  
pp. 996-1009 ◽  
Author(s):  
Shivnath Mazumder ◽  
Ryan A. Thomas ◽  
Richard L. Lord ◽  
H. Bernhard Schlegel ◽  
John F. Endicott

The complexes [Ru(NCCH3)4bpy]2+ and [Ru([14]aneS4)bpy]2+ ([14]aneS4 = 1,4,8,11-tetrathiacyclotetradecane, bpy = 2,2′-bipyridine) have similar absorption and emission spectra but the 77 K metal-to-ligand charge-transfer (MLCT) excited state emission lifetime of the latter is less than 0.3% that of the former. Density functional theory modeling of the lowest energy triplet excited states indicates that triplet metal centered (3MC) excited states are about 3500 cm−1 lower in energy than their 3MLCT excited states in both complexes. The differences in excited state lifetimes arise from a much larger coordination sphere distortion for [Ru(NCCH3)4bpy]2+ and the associated larger reorganizational barrier for intramolecular electron transfer. The smaller ruthenium ligand distortions of the [Ru([14]aneS4)bpy]2+ complex are apparently a consequence of stereochemical constraints imposed by the macrocyclic [14]aneS4 ligand, and the 3MC excited state calculated for the unconstrained [Ru(S(CH3)2)4bpy]2+ complex (S(CH3)2 = dimethyl sulfide) is distorted in a manner similar to that of [Ru(NCCH3)4bpy]2+. Despite the lower energy calculated for its 3MC than 3MLCT excited state, [Ru(NCCH3)4bpy]2+ emits strongly in 77 K glasses with an emission quantum yield of 0.47. The emission is biphasic with about a 1 μs lifetime for its dominant (86%) emission component. The 405 nm excitation used in these studies results in a significant amount of photodecomposition in the 77 K glasses. This is a temperature-dependent biphotonic process that most likely involves the bipyridine-radical anionic moiety of the 3MLCT excited state. A smaller than expected value found for the radiative rate constant is consistent with a lower energy 3MC than 3MLCT state.


Energies ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 150
Author(s):  
Yin-Pai Lin ◽  
Boris Polyakov ◽  
Edgars Butanovs ◽  
Aleksandr A. Popov ◽  
Maksim Sokolov ◽  
...  

Transition metal dichalcogenide (TMD) MoS2 and WS2 monolayers (MLs) deposited atop of crystalline zinc oxide (ZnO) and graphene-like ZnO (g-ZnO) substrates have been investigated by means of density functional theory (DFT) using PBE and GLLBSC exchange-correlation functionals. In this work, the electronic structure and optical properties of studied hybrid nanomaterials are described in view of the influence of ZnO substrates thickness on the MoS2@ZnO and WS2@ZnO two-dimensional (2D) nanocomposites. The thicker ZnO substrate not only triggers the decrease of the imaginary part of dielectric function relatively to more thinner g-ZnO but also results in the less accumulated charge density in the vicinity of the Mo and W atoms at the conduction band minimum. Based on the results of our calculations, we predict that MoS2 and WS2 monolayers placed at g-ZnO substrate yield essential enhancement of the photoabsorption in the visible region of solar spectra and, thus, can be used as a promising catalyst for photo-driven water splitting applications.


2020 ◽  
Author(s):  
Rachel Garrick ◽  
Amir Natan ◽  
Tim Gould ◽  
Leeor Kronik

Hybrid functionals have proven to be of immense practical value in density functional theory calculations. While they are often thought to be a heuristic construct, it has been established that this is in fact not the case. Here, we present a rigorous and formally exact analysis of generalized Kohn-Sham (GKS) density functional theory of hybrid functionals, in which exact remainder exchange-correlation potentials combine with a fraction of Fock exchange to produce the correct ground state density. First, we extend formal GKS theory by proving a generalized adiabatic connection theorem. We then use this extension to derive two different definitions for a rigorous distinction between multiplicative exchange and correlation components - one new and one previously postulated. We examine their density-scaling behavior and discuss their similarities and differences. We then present a new algorithm for obtaining exact GKS potentials by inversion of accurate reference electron densities and employ this algorithm to obtain exact potentials for simple atoms and ions. We establish that an equivalent description of the many-electron problem is indeed obtained with any arbitrary global fraction of Fock exchange and we rationalize the Fock-fraction dependence of the computed remainder exchange-correlation potentials in terms of the new formal theory. Finally, we use the exact theoretical framework and numerical results to shed light on the exchange-correlation potential used in approximate hybrid functional calculations and to assess the consequences of different choices of fractional exchange.<br><br>


Sign in / Sign up

Export Citation Format

Share Document