Can optical fiber compete with profile analysis tensiometry in critical micelle concentration measurement?

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Farzaneh Hajirasouliha ◽  
Hua Yang ◽  
Qiang Wu ◽  
Dominika Zabiegaj

Abstract Critical micelle concentration (CMC) is one of the important nominal characteristics of the surfactants which can be measured using various methods. In this study, to detect the CMC of two ionic surfactants, cetyltrimethylammonium bromide (CTAB) and sodium dodecyl sulfate (SDS), two methods were utilized: (a) optical fiber and (b) drop profile analysis tensiometry (PAT) techniques. The spectrum width center and surface tension of the solutions at different concentrations of the surfactant were measured. The preliminary outcomes showed a compliance between optical fiber method and PAT technique. However, there were differences in the behavior of two surfactants in optical fiber measurement. In this method, when the solid surface of fiber is put in the system, the interactions between surfactant molecules and the fiber surface must be carefully considered.

1997 ◽  
Vol 35 (7) ◽  
pp. 123-130 ◽  
Author(s):  
J. C. Liu ◽  
P. S. Chang

The solubility of chlorophenols as affected by surfactant was investigated. Three kinds of surfactant, sodium dodecyl sulfate, Triton X-100, and Brij 35, were utilized. The solubilization of chlorophenols by surfactant follows the order of 2,4,6-trichlorophenol > 2,4-dichlorophenol > 2,6-dichlorophenol > 2-chlorophenol; and the critical micelle concentration is an important index. The adsorption reactions of 2,4-dichlorophenol and 2,4,6- trichlorophenol onto hydrous montmorillonite in the presence of surfactant were examined. The presence of surfactant decreased the adsorption of chlorophenols significantly. The roles of hydrophobicity of chlorophenols in solubilization and adsorption behaviors are discussed.


2001 ◽  
Author(s):  
Patricia O. Iwanik ◽  
Wilson K. S. Chiu

Abstract A fundamental understanding of how reactor parameters influence the fiber surface temperature is essential to manufacturing high quality optical fiber coatings by chemical vapor deposition (CVD). In an attempt to better understand this process, a finite volume model has been developed to study the gas flow and heat transfer of an optical fiber as it travels through a CVD reactor. This study showed that draw speed significantly affects fiber temperature inside the reactor, with temperature changes up to 45% observed under the conditions studied. Multiple heat transfer modes contribute to this phenomena, with convection heat transfer dominating the process.


2019 ◽  
Vol 68 (5) ◽  
pp. 1554-1560 ◽  
Author(s):  
Arthur Aprigio de Melo ◽  
Talita Brito da Silva ◽  
Marcia Fernanda da Silva Santiago ◽  
Cleumar da Silva Moreira ◽  
Rossana Moreno Santa Cruz

Sign in / Sign up

Export Citation Format

Share Document