Prediction of Chloride Ingress in Saturated Concrete Using Formation Factor and Chloride Binding Isotherm

2018 ◽  
Vol 7 (1) ◽  
pp. 20170141 ◽  
Author(s):  
Chunyu Qiao ◽  
Alex Thomas Coyle ◽  
O. Burkan Isgor ◽  
W. Jason Weiss
2013 ◽  
Vol 28 (3) ◽  
pp. 548-556 ◽  
Author(s):  
Qiang Yuan ◽  
Dehua Deng ◽  
Caijun Shi ◽  
Geert De Schutter

2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Min Jae Kim ◽  
Ki Beom Kim ◽  
Ki Yong Ann

The present study concerns the influence of C3A in cement on chloride transport in reinforced concrete. Three modified cement was manufactured in the variation of the C3A content, ranging from 6.0 and 10.5 up to 16.9%. The setting time of fresh concrete was measured immediately after mixing, together with the temperature at the time of initial set. For properties of hardened concrete in the variation in the C3A, a development of the compressive strength and chloride permeation were measured using mortar specimens. Simultaneously, chloride binding capacity was measured by the water extraction method. To ensure the influence of pore structure on chloride transport, the pore structure was examined by the mercury intrusion porosimetry. As a result, it was found that an increase in the C3A content resulted in an increase in chloride binding capacity. However, it seemed that increased binding of chlorides is related to the higher ingress of chlorides, despite denser pore structure. It may be attributed to the higher surface chloride, which could increase the gradient of chloride concentration from the surface, thereby leading to the higher level of chloride profiles. Substantially, the benefit of high C3A in resisting corrosion, arising from removal of free chlorides in the pore solution, would be offset by increased chloride ingress at a given duration, when it comes to the corrosion-free service life.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Muhammad Umar Khan ◽  
Shamsad Ahmad ◽  
Husain Jubran Al-Gahtani

Initiation of corrosion of steel in reinforced concrete (RC) structures subjected to chloride exposures mainly depends on coefficient of chloride diffusion, Dc, of concrete. Therefore, Dc is one of the key parameters needed for prediction of initiation of reinforcement corrosion. Fick’s second law of diffusion has been used for long time to derive the models for chloride diffusion in concrete. However, such models do not include the effects of various significant factors such as chloride binding by the cement, multidirectional ingress of chloride, and variation of Dc with time due to change in the microstructure of concrete during early period of cement hydration. In this paper, a review is presented on the development of chloride diffusion models by incorporating the effects of the key factors into basic Fick’s second law of diffusion. Determination of corrosion initiation time using chloride diffusion models is also explained. The information presented in this paper would be useful for accurate prediction of corrosion initiation time of RC structures subjected to chloride exposure, considering the effects of chloride binding, effect of time and space on Dc, and interaction effect of multidirectional chloride ingress.


Sign in / Sign up

Export Citation Format

Share Document