Test Method for Measuring the P-Wave Speed and the Thickness of Concrete Plates Using the Impact-Echo Method

10.1520/c1383 ◽  
2008 ◽  
Author(s):  

2013 ◽  
Vol 639-640 ◽  
pp. 1046-1050 ◽  
Author(s):  
Yun Feng Xiao ◽  
Da Hai Zhang ◽  
Li Liu

The ultrasonic method and the impact-echo method are two kinds of nondestructive test method (NDT), which are widely used, not only for concrete component, but for masonry structures. However, it is hard to detect the flaw in the concrete composite component if only with one kind of detection method. In this study, the principle of ultrasonic method and impact-echo method are outlined. And an attempt of a new method is taken, that Ultrasonic method together with Impact-echo method is used in detecting the deflection in Concrete Composite Component. It is proved that the result of this new method is more accurate and stable than that of only using ultrasonic method or impact-echo method. Introduction Introduction



2014 ◽  
Vol 605 ◽  
pp. 194-197
Author(s):  
Seung Hun Kim ◽  
Seong Uk Hong ◽  
Yong Taeg Lee ◽  
Seung Ho Lee

In order to maintain the existing concrete structures in a safe and usable state, an overall maintenance management is necessary regarding structure aging from quality management of new construction. Thus, non-destructive testing is needed to estimate the structure damage, defect, or proper construction without damaging the structure. In U.S., there is a standard for non-destructive test (ACI 228.2R-98), and also in Japan, the non-destructive test method and compressive strength estimation manual was prepared by the Architectural Institute of Japan in 1983, and there are active researches in the ground field, but it lacks verification in architecture field. Thus, in this study, a technique that can estimate the depth of concrete column member using the Impact Echo method which is one of the non-destructive test methods shall be reviewed and evaluated for applicability to the architecture field. The specimen was mixed with design strength of 30MPa. The equipment used in testing is Freedom Date Pc Platform Win.TFS 2.5.2 by company Olson of U.S., and the experiment involved leveling the top surface of the concrete member, installing the equipment and applying impact 9 times, and taking the average of the reverberation values obtained. The estimated average depth of concrete column member using Impact Echo method was 304mm for IEC-300, 398mm for IEC-400, and 484mm for IEC-500, and the relative error rate compared to the actual size was 1%~3%. Through this study, the applicability of estimation of depth in concrete column members using impact echo method could be confirmed.





2014 ◽  
Vol 1000 ◽  
pp. 285-288 ◽  
Author(s):  
Michal Matysík ◽  
Iveta Plšková ◽  
Zdeněk Chobola

The aim of this paper is to evaluate the possibility of using the Impact-echo method for assessment of extremely long period of frost resistance of ceramic tiles. Sets of ceramic tiles of the Ia class to EN 14 411 B standard made by manufacture RACOs have been analyzed. The ceramic tiles under investigation have been subjected to 500 freeze-thaw-cycle based degradation in compliance with the relevant EN ISO 10545-12 standard. To verify the correctness of the Impact-echo method results, additional physical properties of the ceramic tiles under test have been measured. To analyze the specimen surface condition, we also used Olympus LEXT 3100 confocal scanning microscope. It has been proved that the acoustic method Impact-echo is a sensitive indicator of the structure condition and can be applied to the ceramic cladding element frost resistance and service life prediction assessment.



2016 ◽  
Vol 50 (6) ◽  
pp. 879-884
Author(s):  
Daniela Štefková ◽  
Kristýna Timčaková ◽  
Libor Topolá ◽  
Petr Cikrle


Sign in / Sign up

Export Citation Format

Share Document