Fatigue Initiation Modeling of 316LN Steel Based on Nonlocal Plasticity Theory

2010 ◽  
Vol 7 (7) ◽  
pp. 102552 ◽  
Author(s):  
Julien Schwartz ◽  
Olivier Fandeur ◽  
Colette Rey ◽  
S. Kalluri ◽  
R. M. McGaw ◽  
...  
1996 ◽  
Vol 136 (1-2) ◽  
pp. 127-144 ◽  
Author(s):  
Lena Strömberg ◽  
Matti Ristinmaa

2005 ◽  
Vol 02 (04) ◽  
pp. 601-626 ◽  
Author(s):  
JEOUNG-HEUM YEON ◽  
SUNG-KIE YOUN

A meshfree multiscale method is presented for efficient analysis of solids with strain gradient plastic effects. In the analysis of strain gradient plastic solids, localization due to increased hardening of strain gradient effect appears. Chen-Wang theory is adopted, as a strain gradient plasticity theory. It represents strain gradient effects as an internal variable and retains the essential structure of classical plasticity theory. In this work, the scale decomposition is carried out based on variational form of the problem. Coarse scale is designed to represent global behavior and fine scale to represent local behavior and gradient effect by using the intrinsic length scale. From the detection of high strain gradient region, fine scale region is adopted. Each scale variable is approximated using meshfree method. Meshfree approximation is well suited for adaptivity. As a method of increasing resolution, partition of unity based extrinsic enrichment is used. Each scale problem is solved iteratively. The proposed method is applied to bending of a thin beam and bimaterial shear layer and micro-indentation problems. Size effects can be effectively captured in the results of the analysis.


2011 ◽  
Vol 146 ◽  
pp. 213-225 ◽  
Author(s):  
T. Bellahcene ◽  
J. Capelle ◽  
Méziane Aberkane ◽  
Z. Azari

The aim of this work is to study the effects of hydrogen absorption on mechanical properties of pipe API 5L X70 steel. This study is conducted in special soil solution NS4 with pH 6.7 It show that the tensile properties like yield stress, ultimate strength and elongation at failure reduced under hydrogen embrittlement. Several fatigue tests (three (03) points bending tests) on roman tile specimens with notch are performed. Fatigue initiation is detected by acoustic emission. A comparison between specimens electrolytically charged with hydrogen and specimens without hydrogen absorption is made and it has been noted that fatigue initiation time is reduced when hydrogen embrittlement occurs. The field of elastoplastic stresses near the notch is computed by the finite-element method with the Abaqus software package. Effective distance and stress are calculated with the volumetric approach and the Notch intensity Factor of the roman tile specimen is determined for each loading value used in our tests.


2000 ◽  
Vol 15 (8) ◽  
pp. 1786-1796 ◽  
Author(s):  
Y. Huang ◽  
Z. Xue ◽  
H. Gao ◽  
W. D. Nix ◽  
Z. C. Xia

We recently proposed a theory of mechanism-based strain gradient (MSG) plasticity to account for the size dependence of plastic deformation at micron- and submicronlength scales. The MSG plasticity theory connects micron-scale plasticity to dislocation theories via a multiscale, hierarchical framework linking Taylor's dislocation hardening model to strain gradient plasticity. Here we show that the theory of MSG plasticity, when used to study micro-indentation, indeed reproduces the linear dependence observed in experiments, thus providing an important self-consistent check of the theory. The effects of pileup, sink-in, and the radius of indenter tip have been taken into account in the indentation model. In accomplishing this objective, we have generalized the MSG plasticity theory to include the elastic deformation in the hierarchical framework.


2003 ◽  
Vol 48 (3) ◽  
pp. 131-133 ◽  
Author(s):  
S. E. Aleksandrov ◽  
R. V. Goldshtein ◽  
E. A. Lyamina

2012 ◽  
Vol 15 (1-2) ◽  
pp. 58-68 ◽  
Author(s):  
Peter V. Trusov ◽  
P. S. Volegov ◽  
A. Yu. Yants

Sign in / Sign up

Export Citation Format

Share Document