Calibrating Mechanistic-Empirical Design Guide Permanent Deformation Models Based on Accelerated Pavement Testing

2009 ◽  
Vol 37 (1) ◽  
pp. 101854 ◽  
Author(s):  
M. R. Mitchell ◽  
R. E. Link ◽  
Feng Hong ◽  
Dar-Hao Chen
2021 ◽  
Author(s):  
Afzal Waseem

The AASHTO-supported interim Mechanistic-Empirical Pavement Design Guide (MEPDG) was published in 2008 for trial use. However, local calibration of the empirical distress models in the design guide has been an essential exercise for any transportation agency before it formally adopts the MEPDG for practical design use. Nevertheless, a universally agreed upon local calibration methodology using historical pavement performance data from field evaluation has not been available. This research focuses on permanent deformation or rutting models in MEPDG and presents a layer-by-layer longitudinal local calibration process at the DARWin-METM platform coupled with Excel Macros. Using the best input data available, many of Level 3 accuracy, the study performs local calibration for 10 reconstructed and 19 rehabilitated flexible pavement sections. Further, this thesis statistically evaluated the level-3 pre-overlay rut value for rehabilitated flexible pavements in Ontario. A comparison of the longitudinal calibration and pooled local calibration demonstrated the importance of the longitudinal calibration in the quantification of uncertainties involved in local calibration.


2021 ◽  
Author(s):  
Maryam Amir

The AASHTO Mechanistic-Empirical Pavement Design Guide requires local calibration to account for local conditions, materials, and engineering practices. Previous local calibration studies in Ontario focused mainly on permanent deformation models for pavement rutting. The objectives of this study are twofold. First, to provide an enhanced calibration for the rutting models by using more vigilantly cross-verified input data and updated observed rutting data. Second, to perform a trial calibration for the international roughness index (IRI) model by considering three different calibration methods. Cracking models calibration, being performed by another colleague, has not yet been finalized; therefore, the IRI model calibration cannot be finalized in this study. Based upon 63 Superpave sections, the local calibration coefficients were found to be βAC = 1.7692, βT = 1.0, βN = 0.6262, βGB = 0.0968 and βSG = 0.2787 , which reduced the standard deviation of residuals to a value of 1 mm. The IRI calibration study found that the initial IRI value plays an important role in the calibration. Keywords: International Roughness Index (IRI) model; local calibration; Mechanistic-Empirical Pavement Design Guide (MEPDG); rutting model; Superpave.


2012 ◽  
Vol 16 (4) ◽  
pp. 579-585 ◽  
Author(s):  
Young-Chan Suh ◽  
Dae-Wook Park ◽  
Nam-Hyun Jo ◽  
Soo-Ahn Kwon

2013 ◽  
Vol 2363 (1) ◽  
pp. 113-121 ◽  
Author(s):  
Xiaochao Tang ◽  
Angelica M. Palomino ◽  
Shelley M. Stoffels

Numerous studies have revealed the benefits of using geogrids in a flexible pavement, especially for reducing permanent deformation. One of the questions that remain about the effectiveness of a geogrid in reinforcing of pavement is the extent to which the geogrid is engaged and mobilized throughout its service. This paper presents results of a laboratory study on various geogrid products embedded in flexible-pavement sections. The laboratory-scale pavement sections were subjected to cyclic moving wheel loads by using reduced-scale accelerated pavement testing (APT). During the APT, strains that developed in the geogrids were measured at intervals of loading applications by strain gauges installed in pairs on the upper and lower surfaces of the geogrid ribs. Permanent deformation of the subgrade was also measured at the same intervals of loading applications. The measurements of geogrid strains throughout the construction process indicated that the construction resulted in a considerable prestressing effect on the geogrids. Measurements from the individual strain gauges in pairs showed that the gauges installed on the upper surfaces of the ribs were in compression while those on the lower surfaces were in tension; the situation suggested a significant effect on the flexural deflection of the ribs on the tensile strain measurements from the strain gauges. Furthermore, it was observed that geogrid ribs in the longitudinal direction of traffic loading were not mobilized, while considerable strains were developed in geogrid ribs in the direction transverse to traffic loading. A clear correlation was found between the reinforcing forces developed in the geogrids and the performance of the reinforced subgrade in relation to resisting permanent deformation.


2021 ◽  
Author(s):  
Afzal Waseem

The AASHTO-supported interim Mechanistic-Empirical Pavement Design Guide (MEPDG) was published in 2008 for trial use. However, local calibration of the empirical distress models in the design guide has been an essential exercise for any transportation agency before it formally adopts the MEPDG for practical design use. Nevertheless, a universally agreed upon local calibration methodology using historical pavement performance data from field evaluation has not been available. This research focuses on permanent deformation or rutting models in MEPDG and presents a layer-by-layer longitudinal local calibration process at the DARWin-METM platform coupled with Excel Macros. Using the best input data available, many of Level 3 accuracy, the study performs local calibration for 10 reconstructed and 19 rehabilitated flexible pavement sections. Further, this thesis statistically evaluated the level-3 pre-overlay rut value for rehabilitated flexible pavements in Ontario. A comparison of the longitudinal calibration and pooled local calibration demonstrated the importance of the longitudinal calibration in the quantification of uncertainties involved in local calibration.


Author(s):  
Wenjing Xue ◽  
Gerardo W. Flintsch ◽  
Brian K. Diefenderfer

Permanent deformation is an essential criterion for evaluating pavement performance. In an accelerated pavement testing (APT) experiment at the Virginia Tech Transportation Institute, a laser profiler, multi-depth deflectometer (MDD), and forensic investigation were used to measure the permanent deformation of a pavement system. This paper analyzes the permanent deformation measured via the three methods during the APT experiment. The major concern among the three methods is applicability rather than accuracy. To measure surface deformation, the laser profiler is a more practical method than MDD in APT, as it can scan the whole surface instead of just one point. To measure the deformation within a pavement structure, MDD provides deformation development throughout the whole experiment, which is helpful for a deeper understanding of pavement materials and structures. However, MDD is also more expensive and requires significant installation effort and maintenance during the experiment compared with forensic investigation, which also needs to be considered.


Sign in / Sign up

Export Citation Format

Share Document