Impact of Leaf/Bunch Ratio and Time of Application on Yield and Fruit Quality of Barhi Date Palm Trees (Phoenix dactyliferaL.) Under Saudi Arabian Conditions

2013 ◽  
Vol 41 (5) ◽  
pp. 20120340
Author(s):  
Alaa El-Din K. Omar ◽  
S. S. Soliman ◽  
M. A. Ahmed
Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 796
Author(s):  
Mohamed A. Mattar ◽  
Said S. Soliman ◽  
Rashid S. Al-Obeed

A field experiment was conducted on date palm trees (Phoenix dactylifera ‘Succary’) cultivated on sandy loam soil from 2017 to 2018. This study investigated the effects of providing water of three different qualities, namely freshwater (FR) and two saline water sources: reclaimed wastewater (RW) and well-water (WE) applied through three irrigation levels representing 50% (I50), 100% (I100), and 150% (I150) of crop evapotranspiration (ETc), on the soil water and salt distribution patterns, yield, water productivity (WP), and fruit quality of the ′Succary′ date palm. The electrical conductivity (ECw) of FR, RW, and WE were 0.18, 2.06, and 3.94 dS m−1, respectively. Results showed that WE applied by the I150 treatment had the highest soil water content, followed by RW used in the I100 irrigation level and FR with I50, whereas the soil salt content was high for WE applied in the I50 level and low for FR applied by the I150 treatment. Deficit irrigation (I50) of date palms with either RW or WE reduced date yields on average 86 kg per tree, whereas the yield increased under over-irrigation (I150) with FR to 123.25 kg per tree. High WP values were observed in the I50 treatments with FR, RW, or WE (on average 1.82, 1.68, and 1.67 kg m−3, respectively), whereas the I150 treatment with each of the three water types showed the lowest WP values. Fruit weight and size were the lowest in the full irrigation (I100) with WE, whereas the I150 treatment with RW showed the highest values. There were no significant differences in either total soluble solids (TSS) or acidity values when the irrigation level decreased from 100% to 50% ETc. Compared with both I50 and I100 treatments, reduced values of both TSS and acidity were observed in the I150 treatment when ECw decreased from 3.94 to 0.18 dS m−1,. Fruit moisture content decreased with the application of saline irrigation water (i.e., RW or WE). Total sugar and non-reducing sugar contents in fruits were found to be decreased in the combination of RW and I150, whereas the 50% ETc irrigation level caused an increment in both parameters. These results suggest that the application of deficit irrigation to date palm trees grown in arid regions, either with FR or without it, can sufficiently maximize WP and improve the quality of fruits but negatively affects yield, especially when saline water is applied. The use of saline water for irrigation may negatively affect plants because of salt accumulation in the soil in the long run.


2010 ◽  
pp. 725-732
Author(s):  
S.S. Soliman ◽  
R.S. Al-Obeed ◽  
M.M. Harhash
Keyword(s):  

2021 ◽  
Vol 52 (2) ◽  
pp. 60-69
Author(s):  
A. El-Salhy ◽  
A. Masoud ◽  
Doaa El-Kassas ◽  
Ezz Gadalla ◽  
Hafez Hassan

HortScience ◽  
1996 ◽  
Vol 31 (4) ◽  
pp. 613b-613
Author(s):  
Esmaeil Fallahi ◽  
John K. Fellman

Effects of three times and five rates of urea application on productivity, tree growth, soil nitrate movement, nutrient partitioning, and postharvest fruit quality of `Redspur Delicious' apple on M.7 rootstock over several years were studied. Time of application did not have significant effects on most fruit quality factors or yield. However, significant differences were observed for quality and yield measurements among different quantities of N. Fruit firmness decreased with every increment in N increase. Trees with N at 0.045 kg/tree had lower yield and higher fruit firmness than those with higher quantities of N. Fruit weight and color decreased with each increment increase in the quantity of N. Trees with N at 0.045 and 0.18 kg/tree had significantly better (more red) color and lower fruit N and leaf N than those with higher quantities of N. Bud tissue nutrients were affected by quantity of N application. Fruit from trees with N at <0.18 kg/tree had lower soluble solids. High N increased fruit ethylene and respiration. Nitrogen application affected 2-methyl butyl acetate of fruit. Monitoring nitrate movement through the soil showed that application of N at >0.45 kg/tree, particularly in fall resulted in excess levels of nitrate, increasing the possibility of underground water contamination. Applying N at ≤0.32 kg/tree did not result in excess soil nitrate at 1.52-m depth.


Sign in / Sign up

Export Citation Format

Share Document