Relative Comparison of Complex Dynamic Modulus Predictive Models for Non-Conventional Asphalt Concrete Mixtures

2017 ◽  
Vol 46 (1) ◽  
pp. 20160266
Author(s):  
D. J. Mensching ◽  
M. M. Jeong ◽  
L. Myers McCarthy
2015 ◽  
Vol 49 (3) ◽  
pp. 857-868 ◽  
Author(s):  
Yasir Ali ◽  
Muhammad Irfan ◽  
Sarfraz Ahmed ◽  
Shahab Khanzada ◽  
Tariq Mahmood

2021 ◽  
Vol 295 ◽  
pp. 123642
Author(s):  
Yasir Ali ◽  
Fizza Hussain ◽  
Muhammad Irfan ◽  
Abdul Salam Buller

Author(s):  
Pravat Karki ◽  
Yong-Rak Kim ◽  
Dallas N. Little

This paper presents a computational micromechanics modeling approach to predict the dynamic modulus of asphalt concrete mixtures. The modeling uses a finite element method combined with the micromechanical representative volume element (RVE) of mixtures and laboratory tests that characterize the properties of individual mixture constituents. The model treats asphalt concrete mixtures as heterogeneous with two primary phases: a linear viscoelastic fine aggregate matrix (FAM) phase and a linear elastic aggregate phase. The mechanical properties of each phase were experimentally obtained by conducting constitutive tests: oscillatory torsion tests for the viscoelastic FAM phase and quasistatic nanoindentation tests for the elastic aggregate particles. Material properties of each mixture phase were then used in the finite element simulation of two-dimensional mixture microstructures obtained from digital image processes of asphalt concrete mixtures. Model simulations were compared with the experimental dynamic moduli of asphalt concrete mixtures. Simulation results indicated that the micromechanical approach based on the mixture microstructure and phase properties could fairly predict the overall mixture properties that are typically obtained from laboratory mixture tests. Furthermore, the RVE dimension of 60 mm might be used to predict the undamaged viscoelastic stiffness characteristics of asphalt concrete mixtures with reduced computing efforts.


2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Muhammad Irfan ◽  
Asad S. Waraich ◽  
Sarfraz Ahmed ◽  
Yasir Ali

This research characterizes the performance of various plant-produced asphalt concrete mixtures by dynamic modulus|E∗|test using asphalt mixture performance tester (AMPT). Marshall designed specimens of seven different mixtures were prepared using the Superpave gyratory compactor and subjected to sinusoidal compressive loading at various temperatures (4.4 to 54.4°C) and loading frequencies (0.1 to 25 Hz). A catalog of default dynamic modulus values for typical asphalt concrete mixtures of Pakistan was established by developing stress-dependent master curves separately, for wearing and base course mixtures. The sensitivity of temperature and loading frequency on determination of dynamic modulus value was observed by typical isothermal and isochronal curves, respectively. Also, the effects of various variables on dynamic modulus were investigated using statistical technique of two-level factorial design of experiment. Furthermore, two dynamic modulus prediction models, namely, Witczak and Hirsch, were evaluated for their regional applicability. Results indicated that both the Witczak and Hirsch models mostly underpredict the value of dynamic modulus for the selected conditions/mixtures. The findings of this study are envisaged to facilitate the implementation of relatively new performance based mechanistic-empirical structural design and analysis approach.


Author(s):  
Jo Sias Daniel ◽  
Y. Richard Kim ◽  
Hyun-Jong Lee

The effects of aging on asphalt-aggregate mixtures is a topic that has been gaining attention in recent years. Of special interest is how the fatigue performance of asphalt concrete mixtures changes with time because of changing material properties. The fatigue performance of a mixture is related to its viscoelastic material properties. An investigation of the effects of aging on viscoelastic properties of an asphalt-aggregate mixture, such as creep compliance, relaxation modulus, dynamic modulus, and phase angle, is discussed in this paper. The framework for including the effect of aging in an existing uniaxial constitutive model is established, and the applicability of Schapery’s elastic-viscoelastic correspondence principle to aged mixtures is validated.


Sign in / Sign up

Export Citation Format

Share Document