scholarly journals Characterization of Various Plant-Produced Asphalt Concrete Mixtures Using Dynamic Modulus Test

2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Muhammad Irfan ◽  
Asad S. Waraich ◽  
Sarfraz Ahmed ◽  
Yasir Ali

This research characterizes the performance of various plant-produced asphalt concrete mixtures by dynamic modulus|E∗|test using asphalt mixture performance tester (AMPT). Marshall designed specimens of seven different mixtures were prepared using the Superpave gyratory compactor and subjected to sinusoidal compressive loading at various temperatures (4.4 to 54.4°C) and loading frequencies (0.1 to 25 Hz). A catalog of default dynamic modulus values for typical asphalt concrete mixtures of Pakistan was established by developing stress-dependent master curves separately, for wearing and base course mixtures. The sensitivity of temperature and loading frequency on determination of dynamic modulus value was observed by typical isothermal and isochronal curves, respectively. Also, the effects of various variables on dynamic modulus were investigated using statistical technique of two-level factorial design of experiment. Furthermore, two dynamic modulus prediction models, namely, Witczak and Hirsch, were evaluated for their regional applicability. Results indicated that both the Witczak and Hirsch models mostly underpredict the value of dynamic modulus for the selected conditions/mixtures. The findings of this study are envisaged to facilitate the implementation of relatively new performance based mechanistic-empirical structural design and analysis approach.

Materials ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1133 ◽  
Author(s):  
Senja Rum Harnaeni ◽  
Florentina Pungky Pramesti ◽  
Arif Budiarto ◽  
Ary Setyawan ◽  
Muhammad Imran Khan ◽  
...  

The aim of this study is to assess the viscoelastic parameters (i.e., phase angle and dynamic modulus) of asphalt concrete-wearing course (AC-WC) and hot rolled sheet-wearing course (HRS-WC) mixtures obtained from the dynamic modulus test. This study was accomplished in four stages: determining optimum asphalt content using Marshall mix design procedure, stability and flow parameters from Marshall test, viscoelastic parameters from dynamic modulus testing and finally the generation of dynamic modulus master curves at a reference temperature of 25 °C. The results showed that at the same temperature, the dynamic modulus of AC-WC and HRS-WC mixtures tended to increase with escalating the loading frequency, while dynamic modulus decreases with an increase in the test temperature at constant loading frequency. Furthermore, the dynamic modulus of the AC-WC mixture was recorded as 100% higher than the HRS-WC asphalt mixture. The phase angle, however, showed contradictory behavior with that shown in dynamic modulus. The phase angle of the AC-WC mixture and HRS-WC asphalt mixture showed almost the same behavior. Similarly, the dynamic modulus master curves of AC-WC and HRS-WC asphalt mixtures can be used to predict the dynamic modulus at the frequency range of 0.01 to 10 Hz and a reference temperature of 25 °C. The results were also used to evaluate the rutting and fatigue performance of AC-WC and HRS-WC.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Yun Hou ◽  
Yanxia Cai ◽  
Zhishu Zang ◽  
Zhenyu Qian ◽  
Bin Zhao

In order to study dynamic characteristics of warm mix foamed asphalt mixture in seasonal frozen area, cylinder dynamic modulus test of four kinds of mixture with two gradations and three kinds of asphalt was carried out by UTM-100. Then, the effects of test temperature, loading frequency, and foaming water consumption on dynamic modulus were analyzed. Finally, the compressive resilient modulus trial was made to compare mechanical properties. Results show that dynamic modulus for warm mix foamed asphalt mixture increases with rising temperature and decreased frequency. The inflection points of the dynamic modulus vs frequency curves at low temperature, normal temperature, and high temperature are 2 Hz, 10 Hz, and 15 Hz, respectively. Static modulus of SBS# modified and nonmodified warm mix foamed asphalt mixture is corresponding to the dynamic modulus 0.001 Hz–0.1 Hz and 0.00001 Hz–0.05 Hz. The effect on gradation type on the dynamic modulus of asphalt mixture is AC-20 > AC-13, and the degree of sensitivity of the water consumption to the master curve equation of dynamic modulus under different gradations is AC-13 > AC-20.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Chaohui Wang ◽  
Songyuan Tan ◽  
Qian Chen ◽  
Jiguo Han ◽  
Liang Song ◽  
...  

Dynamic modulus is a key evaluation index of the high-modulus asphalt mixture, but it is relatively difficult to test and collect its data. The purpose is to achieve the accurate prediction of the dynamic modulus of the high-modulus asphalt mixture and further optimize the design process of the high-modulus asphalt mixture. Five high-temperature performance indexes of high-modulus asphalt and its mixture were selected. The correlation between the above five indexes and the dynamic modulus of the high-modulus asphalt mixture was analyzed. On this basis, the dynamic modulus prediction models of the high-modulus asphalt mixture based on small sample data were established by multiple regression, general regression neural network (GRNN), and support vector machine (SVM) neural network. According to parameter adjustment and cross-validation, the output stability and accuracy of different prediction models were compared and evaluated. The most effective prediction model was recommended. The results show that the SVM model has more significant prediction accuracy and output stability than the multiple regression model and the GRNN model. Its prediction error was 0.98–9.71%. Compared with the other two models, the prediction error of the SVM model declined by 0.50–11.96% and 3.76–13.44%. The SVM neural network was recommended as the dynamic modulus prediction model of the high-modulus asphalt mixture.


Author(s):  
Md Mehedi Hasan ◽  
Hasan M. Faisal ◽  
Biswajit K. Bairgi ◽  
A. S. M. Rahman ◽  
Rafiqul Tarefder

Asphalt concrete’s dynamic modulus (|E*|) is one of the key input parameters for structural design of flexible pavement according to the Mechanistic Empirical Pavement Design Guide (MEPDG). Till this day, pavement industry uses |E*| to predict pavement performance whether the material is hot mix asphalt (HMA) or warm mx asphalt or Reclaimed Asphalt Pavement (RAP) mixed HMA. However, it is necessary to investigate the correlation of |E*| with laboratory performance testing. In this study, laboratory dynamic modulus test was conducted on four different asphalt concrete mixtures collected from different construction sites in the state of New Mexico and mastercurves were obtained to evaluate dynamic modulus (|E*|) for a wide range of frequency. In addition, fatigue performance of these mixtures was predicted from the mastercurves and compared with the laboratory fatigue performance testing. Fatigue performance of these mixtures was evaluated from the four point beam fatigue test. The laboratory results show a good agreement with the predicted value from mastercurves. It is also observed from this study that the fatigue life of the asphalt concrete materials decreases with increase in |E*| value.


2014 ◽  
Vol 599 ◽  
pp. 244-247 ◽  
Author(s):  
Qun Shan Ye ◽  
Chang Jian Ye ◽  
Zhi Lin Sun

Viscosity test, dynamic shear test, dynamic modulus test and creep test were conducted to investigate the rheological properties of high modulus asphalt and its mixture. Test results indicated that the viscosity of hard grade asphalt could be increased when compared with the ordinary asphalt, especially at high temperatures. The complex shear modulus and dynamic modulus of hard-grade asphalt binder and its mixture were increased, which implied that the stiffness of them was enhanced. Furthermore, the elastically portions for viscoelastic property of asphalt binders were increased, which resulted in the reduction of phase angle for hard grade asphalt binders and mixtures. The rutting parameter for hard-grade asphalt mixture was increased remarkably, which revealed that the resistance to permanent deformation could be significantly improved for hard grade asphalt mixture.


2014 ◽  
Vol 505-506 ◽  
pp. 15-18 ◽  
Author(s):  
Xiao Long Zou ◽  
Ai Min Sha ◽  
Wei Jiang ◽  
Xin Yan Huang

In order to analyze the characteristics of high modulus asphalt mixture dynamic modulus, Universal Testing Machine (UTM-25) was used for dynamic modulus test of three kinds of mixtures, which were PR Module modified asphalt mixture and PR PLAST.S modified asphalt mixture and virgin asphalt mixture, to investigate dynamic modulus and phase angle at different temperatures and frequencies. The results indicate that: the dynamic modulus order of the three asphalt mixtures is PR MODULE > PR PLAST.S > Virgin. PR MODULE asphalt mixture dynamic modulus is much larger than the other two.


2012 ◽  
Vol 178-181 ◽  
pp. 1361-1364
Author(s):  
Shi Bin Ma ◽  
Li Jie Wang ◽  
Guo Qiang Zhang

The main purpose of recycling is to reuse existing pavement material. First this paper reviews the necessary, feasibility and mechanistic analysis of recycled asphalt mixture, then summarizes the findings of a laboratory study to characterize and design recycled asphalt concrete mixtures using different tests. The laboratory tests carried out on the material were conventional test methods including unconfined compressive strength, cleavage strength, resilient modulus and shrinkage properties tests. The results of the laboratory can be taken as reference in design, engineering and further research.


Coatings ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1502
Author(s):  
Licheng Guo ◽  
Qinsheng Xu ◽  
Guodong Zeng ◽  
Wenjuan Wu ◽  
Min Zhou ◽  
...  

In the French high-modulus asphalt mixture design system, the complex modulus of the mixture under the conditions of 15 °C and 10 Hz is taken as the design index. However, in China, the dynamic modulus under the conditions of 15 °C, 10 Hz, 20 °C, 10 Hz and 45 °C, 10 Hz was taken as the stiffness modulus index of high-modulus asphalt mixture. The difference in modulus values between the two systems caused the pavement structure layer to be thicker and the construction cost to be higher in China. In order to find out the appropriate modulus value of high-modulus asphalt mixture suitable for China’s modulus parameter conditions to better carry out the reasonable design and evaluation of high-modulus asphalt mixture in China, the modulus of four types of high-modulus asphalt mixtures under the two systems through the two-point bending complex modulus test of the CRT-2PT trapezoidal beam and the SPT uniaxial compression dynamic modulus test were analyzed in this paper. Under the premise of meeting the stiffness modulus index of the French high-modulus asphalt mixture, the relationship conversion models between the dynamic modulus and complex modulus of high-modulus asphalt mixture under different temperatures were established. According to the conversion models, the design evaluation value range of dynamic modulus suitable for China’s condition was recommended. It is recommended that the dynamic modulus of China’s high-modulus asphalt mixture at 15 °C and 10 Hz is not less than 16,000 MPa, the dynamic modulus at 20 °C and 10 Hz is not less than 14,000 MPa, and the dynamic modulus at 45 °C and 10 Hz is not less than 2500 MPa. Five kinds of high-modulus asphalt mixtures used in actual road engineering were tested to verify the reliability of the recommended dynamic modulus values based on the modulus conversion model, and the results are consistent with the recommended value range of the model.


Sign in / Sign up

Export Citation Format

Share Document