A New Approach to the Prediction of the Fretting Fatigue Life that Considers the Shifting of the Contact Edge by Wear

Author(s):  
T Hattori ◽  
M Nakamura ◽  
T Watanabe
1991 ◽  
Vol 40 (458) ◽  
pp. 1453-1458
Author(s):  
Masayuki NAKAMURA ◽  
Toshio HATTORI ◽  
Hiroshi SAKATA ◽  
Tatsuroo ISHIZUKA

2008 ◽  
Vol 587-588 ◽  
pp. 971-975 ◽  
Author(s):  
M. Buciumeanu ◽  
A.S. Miranda ◽  
F.S. Silva

The main objective of this work was to study the influence of the wear properties of two commercial alloys (CK45 and Al7175) on their fretting fatigue behavior. It is verified the effect of material local degradation by wear on a fatigue strength reduction factor, namely the stress concentration factor, and on the overall fretting fatigue life of these materials. The fretting fatigue phenomenon is a synergetic effect between wear and fatigue. It is dependent on both the fatigue and the wear properties of the materials. Material properties promoting an increase in wear resistance should enhance fretting fatigue life.


2010 ◽  
Vol 32 (12) ◽  
pp. 1937-1947 ◽  
Author(s):  
Patrick J. Golden ◽  
Harry R. Millwater ◽  
Xiaobin Yang

1981 ◽  
Vol 103 (3) ◽  
pp. 223-228 ◽  
Author(s):  
A. Kantimathi ◽  
J. A. Alic

Fretting fatigue tests have been conducted on 7075-T7351 aluminum alloy coupons with fretting pads of the same material. Three different stress ratios were used, the otherwise constant amplitude axial loads being interrupted every 1000 cycles by either tensile overloads to 400 MPa or compressive underloads to −200 MPa. Tensile overloads greatly prolonged fatigue life for low stresses where the overload ratios were 1.6 and above; compressive underloads had comparatively little effect. The results are discussed in terms of crack growth retardation phenomena.


Sign in / Sign up

Export Citation Format

Share Document