scholarly journals The Kinase Function of MSK1 Regulates BDNF Signaling to CREB and Basal Synaptic Transmission, But Is Not Required for Hippocampal Long-Term Potentiation or Spatial Memory

eNeuro ◽  
2017 ◽  
Vol 4 (1) ◽  
pp. ENEURO.0212-16.2017 ◽  
Author(s):  
Stephanie Daumas ◽  
Christopher J. Hunter ◽  
Rajen B. Mistry ◽  
Lorenzo Morè ◽  
Lucia Privitera ◽  
...  
2019 ◽  
Vol 20 (17) ◽  
pp. 4310 ◽  
Author(s):  
Susanne Meis ◽  
Thomas Endres ◽  
Thomas Munsch ◽  
Volkmar Lessmann

Brain-derived neurotrophic factor (BDNF) has previously been shown to play an important role in glutamatergic synaptic plasticity in the amygdala, correlating with cued fear learning. While glutamatergic neurotransmission is facilitated by BDNF signaling in the amygdala, its mechanism of action at inhibitory synapses in this nucleus is far less understood. We therefore analyzed the impact of chronic BDNF depletion on GABAA-mediated synaptic transmission in BDNF heterozygous knockout mice (BDNF+/−). Analysis of miniature and evoked inhibitory postsynaptic currents (IPSCs) in the lateral amygdala (LA) revealed neither pre- nor postsynaptic differences in BDNF+/− mice compared to wild-type littermates. In addition, long-term potentiation (LTP) of IPSCs was similar in both genotypes. In contrast, facilitation of spontaneous IPSCs (sIPSCs) by norepinephrine (NE) was significantly reduced in BDNF+/− mice. These results argue against a generally impaired efficacy and plasticity at GABAergic synapses due to a chronic BDNF deficit. Importantly, the increase in GABAergic tone mediated by NE is reduced in BDNF+/− mice. As release of NE is elevated during aversive behavioral states in the amygdala, effects of a chronic BDNF deficit on GABAergic inhibition may become evident in response to states of high arousal, leading to amygdala hyper-excitability and impaired amygdala function.


Hippocampus ◽  
1997 ◽  
Vol 7 (1) ◽  
pp. 88-94 ◽  
Author(s):  
Tzu-Ping Yu ◽  
Jeffrey Fein ◽  
Tien Phan ◽  
Christopher J. Evans ◽  
Cui-Wei Xie

eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Javier Díaz-Alonso ◽  
Wade Morishita ◽  
Salvatore Incontro ◽  
Jeffrey Simms ◽  
Julia Holtzman ◽  
...  

We tested the proposal that the C-terminal domain (CTD) of the AMPAR subunit GluA1 is required for LTP. We found that a knock-in mouse lacking the CTD of GluA1 expresses normal LTP and spatial memory, assayed by the Morris water maze. Our results support a model in which LTP generates synaptic slots, which capture passively diffusing AMPARs.


Sign in / Sign up

Export Citation Format

Share Document