scholarly journals Pathways of Attention: Synaptic Relationships of Frontal Eye Field to V4, Lateral Intraparietal Cortex, and Area 46 in Macaque Monkey

2011 ◽  
Vol 31 (30) ◽  
pp. 10872-10881 ◽  
Author(s):  
J. C. Anderson ◽  
H. Kennedy ◽  
K. A. C. Martin
2016 ◽  
Vol 113 (41) ◽  
pp. E6263-E6270 ◽  
Author(s):  
Mo Chen ◽  
Bing Li ◽  
Jing Guang ◽  
Linyu Wei ◽  
Si Wu ◽  
...  

Although the cerebral cortex is thought to be composed of functionally distinct areas, the actual parcellation of area and assignment of function are still highly controversial. An example is the much-studied lateral intraparietal cortex (LIP). Despite the general agreement that LIP plays an important role in visual-oculomotor transformation, it remains unclear whether the area is primary sensory- or motor-related (the attention-intention debate). Although LIP has been considered as a functionally unitary area, its dorsal (LIPd) and ventral (LIPv) parts differ in local morphology and long-distance connectivity. In particular, LIPv has much stronger connections with two oculomotor centers, the frontal eye field and the deep layers of the superior colliculus, than does LIPd. Such anatomical distinctions imply that compared with LIPd, LIPv might be more involved in oculomotor processing. We tested this hypothesis physiologically with a memory saccade task and a gap saccade task. We found that LIP neurons with persistent memory activities in memory saccade are primarily provoked either by visual stimulation (vision-related) or by both visual and saccadic events (vision-saccade–related) in gap saccade. The distribution changes from predominantly vision-related to predominantly vision-saccade–related as the recording depth increases along the dorsal-ventral dimension. Consistently, the simultaneously recorded local field potential also changes from visual evoked to saccade evoked. Finally, local injection of muscimol (GABA agonist) in LIPv, but not in LIPd, dramatically decreases the proportion of express saccades. With these results, we conclude that LIPd and LIPv are more involved in visual and visual-saccadic processing, respectively.


1997 ◽  
Vol 84 (1-2) ◽  
pp. 31-46 ◽  
Author(s):  
Séamas P. ÓScalaidhe ◽  
Hillary R. Rodman ◽  
Thomas D. Albright ◽  
Charles G. Gross

2007 ◽  
Vol 27 (44) ◽  
pp. 11780-11781
Author(s):  
P. Pouget ◽  
M. J. Nelson ◽  
J. Y. Cohen ◽  
R. P. Heitz

1989 ◽  
Vol 3 (2) ◽  
pp. 171-180 ◽  
Author(s):  
George R. Leichnetz

AbstractInferior frontal eye field (FEF) projections to the dorsolateral pontine nucleus (DLPN), and corticocortical connections with the superior temporal sulcal (STS) cortex, were studied in five macaque monkeys which had received horseradish peroxidase (HRP) gel implants into the inferior prearcuate cortex (including area 45 of Walker, 1940). These connections were contrasted with those from the dorsal FEF (area 8a) in another macaque monkey. Findings of heavy inferior FEF projections to the ipsilateral DLPN (light to the contralateral DLPN) and reciprocal connections with the deep caudal bank and fundus of the superior temporal sulcus (STS), presumed to be the middle temporal (MT) visual area (Maunsell & Van Essen, 1983a), appeared to go hand in hand with more pronounced projections to the stratum superficialis of the superior colliculus (SC). In contrast, the HRP gel implant in the dorsal prearcuate cortex (area 8a of Walker, 1940) resulted in only very light projections to the ipsilateral DLPN, more pronounced projections to the dorsomedial pontine nucleus (DMPN), almost no projection to the stratum superficialis (SS), and more pronounced reciprocal connections with the upper bank of the STS, presumed to be the medial superior temporal (MST) area (Maunsell & Van Essen, 1983a). Both the inferior and dorsal FEF also had extensive reciprocal connections with the ventral intraparietal area (VIP; Maunsell & Van Essen, 1983a) in the caudal bank of the intraparietal sulcus. The correlated projections of the inferior FEF to the DLPN, MT area, and SS may explain its reported role in smooth pursuit (Lynch, 1987), in addition to its well-established role in the production of voluntary purposeful saccadic eye movements (Bruce et al., 1985).


2013 ◽  
Vol 109 (8) ◽  
pp. 2129-2144 ◽  
Author(s):  
Robin C. Ashmore ◽  
Marc A. Sommer

The caudal dentate nucleus (DN) in lateral cerebellum is connected with two visual/oculomotor areas of the cerebrum: the frontal eye field and lateral intraparietal cortex. Many neurons in frontal eye field and lateral intraparietal cortex produce “delay activity” between stimulus and response that correlates with processes such as motor planning. Our hypothesis was that caudal DN neurons would have prominent delay activity as well. From lesion studies, we predicted that this activity would be related to self-timing, i.e., the triggering of saccades based on the internal monitoring of time. We recorded from neurons in the caudal DN of monkeys ( Macaca mulatta) that made delayed saccades with or without a self-timing requirement. Most (84%) of the caudal DN neurons had delay activity. These neurons conveyed at least three types of information. First, their activity was often correlated, trial by trial, with saccade initiation. Correlations were found more frequently in a task that required self-timing of saccades (53% of neurons) than in a task that did not (27% of neurons). Second, the delay activity was often tuned for saccade direction (in 65% of neurons). This tuning emerged continuously during a trial. Third, the time course of delay activity associated with self-timed saccades differed significantly from that associated with visually guided saccades (in 71% of neurons). A minority of neurons had sensory-related activity. None had presaccadic bursts, in contrast to DN neurons recorded more rostrally. We conclude that caudal DN neurons convey saccade-related delay activity that may contribute to the motor preparation of when and where to move.


2007 ◽  
Vol 97 (2) ◽  
pp. 1457-1469 ◽  
Author(s):  
Aditya Murthy ◽  
Supriya Ray ◽  
Stephanie M. Shorter ◽  
Elizabeth G. Priddy ◽  
Jeffrey D. Schall ◽  
...  

Visually guided movements can be inaccurate, especially if unexpected events occur while the movement is programmed. Often errors of gaze are corrected before external feedback can be processed. Evidence is presented from macaque monkey frontal eye field (FEF), a cortical area that selects visual targets, allocates attention, and programs saccadic eye movements, for a neural mechanism that can correct saccade errors before visual afferent or performance monitoring signals can register the error. Macaques performed visual search for a color singleton that unpredictably changed position in a circular array as in classic double-step experiments. Consequently, some saccades were directed in error to the original target location. These were followed frequently by unrewarded, corrective saccades to the final target location. We previously showed that visually responsive neurons represent the new target location even if gaze shifted errantly to the original target location. Now we show that the latency of corrective saccades is predicted by the timing of movement-related activity in the FEF. Preceding rapid corrective saccades, the movement-related activity of all neurons began before explicit error signals arise in the medial frontal cortex. The movement-related activity of many neurons began before visual feedback of the error was registered and that of a few neurons began before the error saccade was completed. Thus movement-related activity leading to rapid corrective saccades can be guided by an internal representation of the environment updated with a forward model of the error.


2021 ◽  
Author(s):  
Amélie Aussel ◽  
Ian C. Fiebelkorn ◽  
Sabine Kastner ◽  
Nancy J. Kopell ◽  
Benjamin R. Pittman-Polletta

AbstractEven during sustained attention, enhanced processing of attended stimuli waxes and wanes rhythmically, with periods of enhanced and relatively diminished visual processing (and hit rates) alternating at 4 or 8 Hz in a sustained visual attention task. These alternating attentional states occur alongside alternating dynamical states, in which lateral intraparietal cortex (LIP), the frontal eye field (FEF), and the mediodorsal pulvinar exhibit different activity and connectivity at α, β, and γ frequencies - rhythms associated with visual processing, working memory, and motor suppression. To assess whether and how these multiple interacting rhythms contribute to periodicity in attention, we propose a detailed computational model of FEF and LIP that reproduces the rhythmic dynamics and behavioral consequences of observed attentional states, when driven by θ-rhythmic inputs simulating experimentally-observed pulvinar activity. This model reveals that the frequencies and mechanisms of the observed rhythms optimize sensitivity in visual target detection while maintaining functional flexibility.


Sign in / Sign up

Export Citation Format

Share Document