scholarly journals Lateral entorhinal cortex suppresses drift in cortical memory representations

2021 ◽  
pp. JN-RM-1439-21
Author(s):  
Maryna Pilkiw ◽  
Justin Jarovi ◽  
Kaori Takehara-Nishiuchi
2021 ◽  
Author(s):  
Maryna Pilkiw ◽  
Justin Jarovi ◽  
Kaori Takehara-Nishiuchi

Memory retrieval is thought to depend on the reinstatement of cortical memory representations guided by pattern completion processes in the hippocampus. The lateral entorhinal cortex (LEC) is one of the intermediary regions supporting hippocampal-cortical interactions and houses neurons that prospectively signal past events in a familiar environment. To investigate the functional relevance of the LEC's activity for cortical reinstatement, we pharmacologically inhibited the LEC and examined its impact on the stability of ensemble firing patterns in one of the LEC's efferent targets, the medial prefrontal cortex (mPFC). When male rats underwent multiple epochs of identical stimulus sequences in the same environment, the mPFC maintained a stable ensemble firing pattern across repetitions, particularly when the sequence included pairings of neutral and aversive stimuli. With LEC inhibition, the mPFC still formed an ensemble pattern that accurately captured stimuli and their associations within each epoch. However, LEC inhibition markedly disrupted its consistency across the epochs by decreasing the proportion of mPFC neurons that stably maintained firing selectivity for stimulus associations. Thus, the LEC stabilizes cortical representations of learned stimulus associations, thereby facilitating the recovery of the original memory trace without generating a new, redundant trace for familiar experiences. Failure of this process might underlie retrieval deficits in conditions associated with degeneration of the LEC, such as normal aging and Alzheimer's disease.


2020 ◽  
Author(s):  
Jon Palacios-Filardo ◽  
Matt Udakis ◽  
Giles A. Brown ◽  
Benjamin G. Tehan ◽  
Miles S. Congreve ◽  
...  

AbstractAcetylcholine release in the hippocampus plays a central role in the formation of new memory representations by facilitating synaptic plasticity. It is also proposed that memory formation requires acetylcholine to enhance responses in CA1 to new sensory information from entorhinal cortex whilst depressing inputs from previously encoded representations in CA3, but this influential theory has not been directly tested. Here, we show that excitatory inputs from entorhinal cortex and CA3 are depressed equally by synaptic release of acetylcholine in CA1. However, greater depression of feedforward inhibition from entorhinal cortex results in an overall enhancement of excitatory-inhibitory balance and CA1 activation. Underpinning the prioritisation of entorhinal inputs, entorhinal and CA3 pathways engage distinct feedforward interneuron subpopulations and depression is mediated differentially by presynaptic muscarinic M3 and M4 receptors respectively. These mechanisms enable acetylcholine to prioritise novel information inputs to CA1 during memory formation and suggest selective muscarinic targets for therapeutic intervention.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jon Palacios-Filardo ◽  
Matt Udakis ◽  
Giles A. Brown ◽  
Benjamin G. Tehan ◽  
Miles S. Congreve ◽  
...  

AbstractAcetylcholine release in the hippocampus plays a central role in the formation of new memory representations. An influential but largely untested theory proposes that memory formation requires acetylcholine to enhance responses in CA1 to new sensory information from entorhinal cortex whilst depressing inputs from previously encoded representations in CA3. Here, we show that excitatory inputs from entorhinal cortex and CA3 are depressed equally by synaptic release of acetylcholine in CA1. However, feedforward inhibition from entorhinal cortex exhibits greater depression than CA3 resulting in a selective enhancement of excitatory-inhibitory balance and CA1 activation by entorhinal inputs. Entorhinal and CA3 pathways engage different feedforward interneuron subpopulations and cholinergic modulation of presynaptic function is mediated differentially by muscarinic M3 and M4 receptors, respectively. Thus, our data support a role and mechanisms for acetylcholine to prioritise novel information inputs to CA1 during memory formation.


2018 ◽  
Author(s):  
Salman Qasim ◽  
Jonathan Miller ◽  
Cory S. Inman ◽  
Robert E. Gross ◽  
Jon T. Willie ◽  
...  

AbstractThe entorhinal cortex (EC) is known to play a key role in both memory and spatial navigation. Despite this overlap in spatial and mnemonic circuits, it is unknown how spatially responsive neurons contribute to our ability to represent and distinguish past experiences. Recording from medial temporal lobe (MTL) neurons in subjects performing cued recall of object–location memories in a virtual-reality environment, we identified “trace cells” in the EC that remap their spatial fields to locations subjects were cued to recall on each trial. In addition to shifting its firing field according to the memory cue, this neuronal activity exhibited a firing rate predictive of the cued memory’s content. Critically, this memory-specific neuronal activity re-emerged when subjects were cued for recall without entering the environment, indicating that trace-cell memory representations generalized beyond navigation. These findings suggest a general mechanism for memory retrieval via trace-cell activity and remapping in the EC.


2020 ◽  
Author(s):  
Brianna Vandrey ◽  
James A. Ainge

AbstractEpisodic memory requires information about objects to be integrated into a spatial framework. Place cells in the hippocampus encode spatial representations of objects that could be generated through signalling from the entorhinal cortex. Projections from lateral and medial entorhinal cortex to the hippocampus terminate in distal and proximal CA1, respectively. We recorded place cells in distal and proximal CA1 as rats explored an environment that contained objects. Place cells in distal CA1 demonstrated higher measures of spatial tuning and expressed place fields closer to objects. Further, remapping to object displacement was modulated by place field proximity to objects in distal, but not proximal CA1. Finally, representations of previous object locations were more precise in distal CA1. Our data suggest that lateral entorhinal cortex inputs to the hippocampus support spatial representations that are more precise and responsive to objects in cue-rich environments. This is consistent with functional segregation in the entorhinal-hippocampal circuits underlying object-place memory.


2007 ◽  
Author(s):  
Nachshon Meiran ◽  
Yoav Kessler ◽  
Oshrit Cohen-Kdoshai ◽  
Ravid Elenbogen

Sign in / Sign up

Export Citation Format

Share Document