Direct Suppression of Unwanted Memory Representations in the Think/No-Think Procedure? Behavioural and Brain-Activity Evidence

2007 ◽  
Author(s):  
Zara Bergstrom ◽  
Alan Richardson-Klavehn
2005 ◽  
Vol 93 (3) ◽  
pp. 1498-1509 ◽  
Author(s):  
Christina Schmitz ◽  
Per Jenmalm ◽  
H. Henrik Ehrsson ◽  
Hans Forssberg

When humans repetitively lift the same object, the fingertip forces are targeted to the weight of the object. The anticipatory programming of the forces depends on sensorimotor memory representations that provide information on the object weight. In the present study, we investigate the neural substrates of these sensorimotor memory systems by recording the neural activity during predictable or unpredictable changes in the weight of an object in a lifting task. An unpredictable change in weight leads to erroneous programming of the fingertip forces. This triggers corrective mechanisms and an update of the sensorimotor memories. In the present fMRI study, healthy right-handed subjects repetitively lifted an object between right index finger and thumb. In the constant condition, which served as a control, the weight of the object remained constant (either 230 or 830 g). The weight alternated between 230 and 830 g during the regular condition and was irregularly changed between the two weights during the irregular condition. When we contrasted regular minus constant and irregular minus constant, we found activations in the right inferior frontal gyrus pars opercularis (area 44), the left parietal operculum and the right supramarginal gyrus. Furthermore, irregular was associated with stronger activation in the right inferior frontal cortex as compared with regular. Taken together, these results suggest that the updating of sensorimotor memory representations and the corrective reactions that occur when we manipulate different objects correspond to changes in synaptic activity in these fronto-parietal circuits.


2018 ◽  
Author(s):  
Wei-Chun Wang ◽  
Erik A. Wing ◽  
David L.K. Murphy ◽  
Bruce M. Luber ◽  
Sarah H. Lisanby ◽  
...  

AbstractBrain stimulation technologies have seen increasing application in basic science investigations, specifically towards the goal of improving memory functioning. However, proposals concerning the neural mechanisms underlying cognitive enhancement often rely on simplified notions of excitation and, most applications examining the effects of transcranial magnetic stimulation (TMS) on functional neuroimaging measures have been limited to univariate analyses of brain activity. We present here analyses using representational similarity analysis (RSA) and encoding-retrieval similarity (ERS) analysis in order to quantify the effect of TMS on memory representations. To test whether an increase in local excitability in PFC can have measurable influences on upstream representations in earlier temporal memory regions, we compared 1Hz and 5Hz stimulation to the left dorsolateral PFC. We found that 10 minutes of 5Hz rTMS, relative to 1Hz, had multiple effects on neural representations: 1) greater RSA during both encoding and retrieval, 2) greater ERS across all items, and, critically, 3) increasing ERS in MTL with increasing univariate activity in DLPFC, and greater functional connectivity for hits than misses between these regions. These results provide the first evidence of rTMS enhancing semantic representations and strengthen the idea that rTMS may affect the reinstatement of previously experienced events in upstream regions.


2016 ◽  
Author(s):  
Janice Chen ◽  
Yuan Chang Leong ◽  
Kenneth A Norman ◽  
Uri Hasson

Our daily lives revolve around sharing experiences and memories with others. When different people recount the same events, how similar are their underlying neural representations? In this study, participants viewed a fifty-minute audio-visual movie, then verbally described the events while undergoing functional MRI. These descriptions were completely unguided and highly detailed, lasting for up to forty minutes. As each person spoke, event-specific spatial patterns were reinstated (movie-vs.-recall correlation) in default network, medial temporal, and high-level visual areas; moreover, individual event patterns were highly discriminable and similar between people during recollection (recall-vs.-recall similarity), suggesting the existence of spatially organized memory representations. In posterior medial cortex, medial prefrontal cortex, and angular gyrus, activity patterns during recall were more similar between people than to patterns elicited by the movie, indicating systematic reshaping of percept into memory across individuals. These results reveal striking similarity in how neural activity underlying real-life memories is organized and transformed in the brains of different people as they speak spontaneously about past events.


2021 ◽  
pp. 1-13
Author(s):  
Emma Megla ◽  
Geoffrey F. Woodman ◽  
Ashleigh M. Maxcey

Abstract Induced forgetting occurs when accessing an item in memory appears to harm memory representations of categorically related items. However, it is possible that the actual memory representations are unharmed. Instead, people may just change how they make decisions. Specifically, signal detection theory suggests this apparent forgetting may be due to participants shifting their decision criterion. Here, we used behavioral and electrophysiological measures to determine whether induced forgetting is truly due to changes in how items are represented or simply due to a shifting criterion. Participants' behavior and brain activity showed that induced forgetting was due to changes in the strength of the underlying representations, weighing against a criterion shift explanation of induced forgetting.


2019 ◽  
Vol 33 (2) ◽  
pp. 109-118
Author(s):  
Andrés Antonio González-Garrido ◽  
Jacobo José Brofman-Epelbaum ◽  
Fabiola Reveca Gómez-Velázquez ◽  
Sebastián Agustín Balart-Sánchez ◽  
Julieta Ramos-Loyo

Abstract. It has been generally accepted that skipping breakfast adversely affects cognition, mainly disturbing the attentional processes. However, the effects of short-term fasting upon brain functioning are still unclear. We aimed to evaluate the effect of skipping breakfast on cognitive processing by studying the electrical brain activity of young healthy individuals while performing several working memory tasks. Accordingly, the behavioral results and event-related brain potentials (ERPs) of 20 healthy university students (10 males) were obtained and compared through analysis of variances (ANOVAs), during the performance of three n-back working memory (WM) tasks in two morning sessions on both normal (after breakfast) and 12-hour fasting conditions. Significantly fewer correct responses were achieved during fasting, mainly affecting the higher WM load task. In addition, there were prolonged reaction times with increased task difficulty, regardless of breakfast intake. ERP showed a significant voltage decrement for N200 and P300 during fasting, while the amplitude of P200 notably increased. The results suggest skipping breakfast disturbs earlier cognitive processing steps, particularly attention allocation, early decoding in working memory, and stimulus evaluation, and this effect increases with task difficulty.


2010 ◽  
Vol 24 (2) ◽  
pp. 131-135 ◽  
Author(s):  
Włodzimierz Klonowski ◽  
Pawel Stepien ◽  
Robert Stepien

Over 20 years ago, Watt and Hameroff (1987 ) suggested that consciousness may be described as a manifestation of deterministic chaos in the brain/mind. To analyze EEG-signal complexity, we used Higuchi’s fractal dimension in time domain and symbolic analysis methods. Our results of analysis of EEG-signals under anesthesia, during physiological sleep, and during epileptic seizures lead to a conclusion similar to that of Watt and Hameroff: Brain activity, measured by complexity of the EEG-signal, diminishes (becomes less chaotic) when consciousness is being “switched off”. So, consciousness may be described as a manifestation of deterministic chaos in the brain/mind.


2010 ◽  
Vol 24 (2) ◽  
pp. 76-82 ◽  
Author(s):  
Martin M. Monti ◽  
Adrian M. Owen

Recent evidence has suggested that functional neuroimaging may play a crucial role in assessing residual cognition and awareness in brain injury survivors. In particular, brain insults that compromise the patient’s ability to produce motor output may render standard clinical testing ineffective. Indeed, if patients were aware but unable to signal so via motor behavior, they would be impossible to distinguish, at the bedside, from vegetative patients. Considering the alarming rate with which minimally conscious patients are misdiagnosed as vegetative, and the severe medical, legal, and ethical implications of such decisions, novel tools are urgently required to complement current clinical-assessment protocols. Functional neuroimaging may be particularly suited to this aim by providing a window on brain function without requiring patients to produce any motor output. Specifically, the possibility of detecting signs of willful behavior by directly observing brain activity (i.e., “brain behavior”), rather than motoric output, allows this approach to reach beyond what is observable at the bedside with standard clinical assessments. In addition, several neuroimaging studies have already highlighted neuroimaging protocols that can distinguish automatic brain responses from willful brain activity, making it possible to employ willful brain activations as an index of awareness. Certainly, neuroimaging in patient populations faces some theoretical and experimental difficulties, but willful, task-dependent, brain activation may be the only way to discriminate the conscious, but immobile, patient from the unconscious one.


2010 ◽  
Vol 24 (1) ◽  
pp. 25-32 ◽  
Author(s):  
Peter Walla ◽  
Maria Richter ◽  
Stella Färber ◽  
Ulrich Leodolter ◽  
Herbert Bauer

Two experiments investigate effects related to food intake in humans. In Experiment 1, we measured startle response modulation while study participants ate ice cream, yoghurt, and chocolate. Statistical analysis revealed that ice cream intake resulted in the most robust startle inhibition compared to no food. Contrasting females and males, we found significant differences related to the conditions yoghurt and chocolate. In females, chocolate elicited the lowest response amplitude followed by yoghurt and ice cream. In males, chocolate produced the highest startle response amplitude even higher than eating nothing, whereas ice cream produced the lowest. Assuming that high response amplitudes reflect aversive motivation while low response amplitudes reflect appetitive motivational states, it is interpreted that eating ice cream is associated with the most appetitive state given the alternatives of chocolate and yoghurt across gender. However, in females alone eating chocolate, and in males alone eating ice cream, led to the most appetitive state. Experiment 2 was conducted to describe food intake-related brain activity by means of source localization analysis applied to electroencephalography data (EEG). Ice cream, yoghurt, a soft drink, and water were compared. Brain activity in rostral portions of the superior frontal gyrus was found in all conditions. No localization differences between conditions occurred. While EEG was found to be insensitive, startle response modulation seems to be a reliable method to objectively quantify motivational states related to the intake of different foods.


Sign in / Sign up

Export Citation Format

Share Document