scholarly journals Spontaneous Activity Patterns in Primary Visual Cortex Predispose to Visual Hallucinations

2015 ◽  
Vol 35 (37) ◽  
pp. 12947-12953 ◽  
Author(s):  
A. Pajani ◽  
P. Kok ◽  
S. Kouider ◽  
F. P. de Lange
2019 ◽  
Author(s):  
Paloma P Maldonado ◽  
Alvaro Nuno-Perez ◽  
Jan Kirchner ◽  
Elizabeth Hammock ◽  
Julijana Gjorgjieva ◽  
...  

SummarySpontaneous network activity shapes emerging neuronal circuits during early brain development, however how neuromodulation influences this activity is not fully understood. Here, we report that the neuromodulator oxytocin powerfully shapes spontaneous activity patterns. In vivo, oxytocin strongly decreased the frequency and pairwise correlations of spontaneous activity events in visual cortex (V1), but not in somatosensory cortex (S1). This differential effect was a consequence of oxytocin only increasing inhibition in V1 and increasing both inhibition and excitation in S1. The increase in inhibition was mediated by the depolarization and increase in excitability of somatostatin+ (SST) interneurons specifically. Accordingly, silencing SST+ neurons pharmacogenetically fully blocked oxytocin’s effect on inhibition in vitro as well its effect on spontaneous activity patterns in vivo. Thus, oxytocin decreases the excitatory/inhibitory ratio and modulates specific features of V1 spontaneous activity patterns that are crucial for refining developing synaptic connections and sensory processing later in life.


2016 ◽  
Vol 12 (12) ◽  
pp. e1005185 ◽  
Author(s):  
Benjamin R. Cowley ◽  
Matthew A. Smith ◽  
Adam Kohn ◽  
Byron M. Yu

Author(s):  
Jinwoo Kim ◽  
Min Song ◽  
Se-Bum Paik

AbstractIn the primary visual cortex (V1) of higher mammals, long-range horizontal connections (LHCs) are observed to develop, linking iso-orientation domains of cortical tuning. It is unknown how this feature-specific wiring of circuitry develops before eye opening. Here, we show that LHCs in V1 may originate from spatio-temporally structured feedforward activities generated from spontaneous retinal waves. Using model simulations based on the anatomy and observed activity patterns of the retina, we show that waves propagating in retinal mosaics can initialize the wiring of LHCs by co-activating neurons of similar tuning, whereas equivalent random activities cannot induce such organizations. Simulations showed that emerged LHCs can produce the patterned activities observed in V1, matching topography of the underlying orientation map. We also confirmed that the model can also reproduce orientation-specific microcircuits in salt-and-pepper organizations in rodents. Our results imply that early peripheral activities contribute significantly to cortical development of functional circuits.HighlightsDevelopmental model of long-range horizontal connections (LHCs) in V1 is simulatedSpontaneous retinal waves generate feature-specific wiring of LHCs in visual cortexEmerged LHCs induce orientation-matching patterns of spontaneous cortical activityRetinal waves induce orientation-specific microcircuits of visual cortex in rodentsSignificance statementLong-range horizontal connections (LHCs) in the primary visual cortex (V1) are observed to emerge before the onset of visual experience, selectively connecting iso-domains of orientation maps. However, it is unknown how such tuning-specific wirings develop before eye-opening. Here, we show that LHCs in V1 originate from the tuning-specific activation of cortical neurons by spontaneous retinal waves during early developmental stages. Our simulations of a visual cortex model show that feedforward activities from the retina initialize the spatial organization of activity patterns in V1, which induces visual feature-specific wirings of V1 neurons. Our model also explains the origin of cortical microcircuits observed in rodents, suggesting that the proposed developmental mechanism is applicable universally to circuits of various mammalian species.


2021 ◽  
Author(s):  
Marton Albert Hajnal ◽  
Duy Tran ◽  
Michael Einstein ◽  
Mauricio Vallejo Martelo ◽  
Karen Safaryan ◽  
...  

Primary visual cortex (V1) neurons integrate motor and multisensory information with visual inputs during sensory processing. However, whether V1 neurons also integrate and encode higher-order cognitive variables is less understood. We trained mice to perform a context-dependent cross-modal decision task where the interpretation of identical audio-visual stimuli depends on task context. We performed silicon probe population recordings of neuronal activity in V1 during task performance and showed that task context (whether the animal should base its decision on visual or auditory stimuli) can be decoded during both intertrial intervals and stimulus presentations. Context and visual stimuli were represented in overlapping populations but were orthogonal in the population activity space. Context representation was not static but displayed distinctive dynamics upon stimulus onset and offset. Thus, activity patterns in V1 independently represent visual stimuli and cognitive variables relevant to task execution.


1997 ◽  
Vol 14 (1) ◽  
pp. 83-88 ◽  
Author(s):  
Silvia N.M. Reid ◽  
Nigel W. Daw

AbstractSingle neurons were recorded in cat primary visual cortex, and the effect of iontophoresis of the metabotropic glutamate agonist 1S,3R-aminocyclopentane-1.3-dicarboxylic acid (ACPD) was observed. In nearly all cases (41/43), ACPD reduced the visual response. In some cases ACPD also reduced spontaneous activity (24/43), and in other cases ACPD increased spontaneous activity (18/43). Increases were generally seen in infragranular layers (V and VI), and decreases in supragranular layers (II and III). The reduction in the visual response was also largest in supragranular layers. We conclude that activation of metabotropic glutamate receptors has both facilitatory and depressive effects in visual cortex, and the effect depends on the layer of the cell recorded.


Neuroreport ◽  
2007 ◽  
Vol 18 (11) ◽  
pp. 1177-1180 ◽  
Author(s):  
Edward H. De Haan ◽  
Gudrun M. Nys ◽  
Martine J. van Zandvoort ◽  
Nick F. Ramsey

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Marina E Wosniack ◽  
Jan H Kirchner ◽  
Ling-Ya Chao ◽  
Nawal Zabouri ◽  
Christian Lohmann ◽  
...  

Spontaneous activity drives the establishment of appropriate connectivity in different circuits during brain development. In the mouse primary visual cortex, two distinct patterns of spontaneous activity occur before vision onset: local low-synchronicity events originating in the retina and global high-synchronicity events originating in the cortex. We sought to determine the contribution of these activity patterns to jointly organize network connectivity through different activity-dependent plasticity rules. We postulated that local events shape cortical input selectivity and topography, while global events homeostatically regulate connection strength. However, to generate robust selectivity, we found that global events should adapt their amplitude to the history of preceding cortical activation. We confirmed this prediction by analyzing in vivo spontaneous cortical activity. The predicted adaptation leads to the sparsification of spontaneous activity on a slower timescale during development, demonstrating the remarkable capacity of the developing sensory cortex to acquire sensitivity to visual inputs after eye-opening.


Sign in / Sign up

Export Citation Format

Share Document