scholarly journals Oxytocin shapes spontaneous activity patterns in the developing visual cortex by activating somatostatin interneurons

2019 ◽  
Author(s):  
Paloma P Maldonado ◽  
Alvaro Nuno-Perez ◽  
Jan Kirchner ◽  
Elizabeth Hammock ◽  
Julijana Gjorgjieva ◽  
...  

SummarySpontaneous network activity shapes emerging neuronal circuits during early brain development, however how neuromodulation influences this activity is not fully understood. Here, we report that the neuromodulator oxytocin powerfully shapes spontaneous activity patterns. In vivo, oxytocin strongly decreased the frequency and pairwise correlations of spontaneous activity events in visual cortex (V1), but not in somatosensory cortex (S1). This differential effect was a consequence of oxytocin only increasing inhibition in V1 and increasing both inhibition and excitation in S1. The increase in inhibition was mediated by the depolarization and increase in excitability of somatostatin+ (SST) interneurons specifically. Accordingly, silencing SST+ neurons pharmacogenetically fully blocked oxytocin’s effect on inhibition in vitro as well its effect on spontaneous activity patterns in vivo. Thus, oxytocin decreases the excitatory/inhibitory ratio and modulates specific features of V1 spontaneous activity patterns that are crucial for refining developing synaptic connections and sensory processing later in life.

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Marina E Wosniack ◽  
Jan H Kirchner ◽  
Ling-Ya Chao ◽  
Nawal Zabouri ◽  
Christian Lohmann ◽  
...  

Spontaneous activity drives the establishment of appropriate connectivity in different circuits during brain development. In the mouse primary visual cortex, two distinct patterns of spontaneous activity occur before vision onset: local low-synchronicity events originating in the retina and global high-synchronicity events originating in the cortex. We sought to determine the contribution of these activity patterns to jointly organize network connectivity through different activity-dependent plasticity rules. We postulated that local events shape cortical input selectivity and topography, while global events homeostatically regulate connection strength. However, to generate robust selectivity, we found that global events should adapt their amplitude to the history of preceding cortical activation. We confirmed this prediction by analyzing in vivo spontaneous cortical activity. The predicted adaptation leads to the sparsification of spontaneous activity on a slower timescale during development, demonstrating the remarkable capacity of the developing sensory cortex to acquire sensitivity to visual inputs after eye-opening.


STEMedicine ◽  
2020 ◽  
Vol 1 (2) ◽  
pp. e35 ◽  
Author(s):  
Diletta Pozzi

In the absence of external stimuli, the nervous system exhibits a spontaneous electrical activity whose functions are not fully understood, and that represents the background noise of brain operations. Spontaneous activity has been proven to arise not only in vivo, but in in vitro neuronal networks as well, following some stereotypical patterns that reproduce the time course of development of the mammalian nervous system. This review provides an overview of in vitro models for the study of spontaneous network activity, discussing their ability to reproduce in vivo - like dynamics and the main findings obtained with each particular model. While explanted brain slices are able to reproduce the neuronal oscillations typically observed in anaesthetized animals, dissociated cultures allow the use of patient-derived neurons and limit the number of animals used for sample preparation.


2020 ◽  
Author(s):  
Marina E. Wosniack ◽  
Jan H. Kirchner ◽  
Ling-Ya Chao ◽  
Nawal Zabouri ◽  
Christian Lohmann ◽  
...  

Spontaneous activity drives the establishment of appropriate connectivity in different circuits during brain development. In the mouse primary visual cortex, two distinct patterns of spontaneous activity occur before vision onset: local low-synchronicity events originating in the retina, and global high-synchronicity events originating in the cortex. We sought to determine the contribution of these activity patterns to jointly organize network connectivity through different activity-dependent plasticity rules. We found that local events shape cortical input selectivity and topography, while global events have a homeostatic role regulating connection strength. To generate robust selectivity, we predicted that global events should adapt their amplitude to the history of preceding cortical activation, and confirmed by analyzing in vivo spontaneous cortical activity. This adaptation led to the sparsification of spontaneous activity on a slower timescale during development, demonstrating the remarkable capacity of the developing sensory cortex to acquire sensitivity to visual inputs after eye-opening.


2002 ◽  
Vol 19 (3) ◽  
pp. 355-364 ◽  
Author(s):  
C.J. BEAVER ◽  
Q-H. JI ◽  
X-T. JIN ◽  
N.W. DAW

Activation of Group III metabotropic glutamate receptors (mGluRs) by L(+)-2-amino-4-phosphonobutyric acid (L-AP4) has different effects on in vitro slice preparations of visual cortex (Jin & Daw, 1998) as compared with in vivo recordings from somatosensory cortex (Wan & Cahusac, 1995). To investigate the role of Group III mGluRs in the cat visual cortex, in vivo recordings were made of neurons in area 17 of the visual cortex of kittens and adult cats at different ages and the effect of iontophoretic application of L-AP4 (100 mM) was examined. Application of L-AP4 resulted in an increase of the spontaneous activity and visual response of neurons to visual stimulation, the former more than the latter. The effect of L-AP4 was greatest at 3–5 weeks of age with the effect on the visual response declining more rapidly than the effect on spontaneous activity. Consistent with work in rat cortex (Jin & Daw, 1998), the effect of L-AP4 was significantly greater in upper and lower layers than in middle layers. Whole-cell in vitro recordings from slices of rat visual cortex indicated that L-AP4 (50 mM) did not increase the number of spikes elicited by increasing levels of current injections. These results confirm that L-AP4 increases activity in vivo and reasons for the discrepancy with the in vitro results are discussed.


2007 ◽  
Vol 97 (4) ◽  
pp. 2937-2948 ◽  
Author(s):  
Ofer Feinerman ◽  
Menahem Segal ◽  
Elisha Moses

Spontaneous activity is typical of in vitro neural networks, often in the form of large population bursts. The origins of this activity are attributed to intrinsically bursting neurons and to noisy backgrounds as well as to recurrent network connections. Spontaneous activity is often observed to emanate from localized sources or initiation zones, propagating from there to excite large populations of neurons. In this study, we use unidimensional cultures to overcome experimental difficulties in identifying initiation zones in vivo and in dissociated two-dimensional cultures. We found that spontaneous activity in these cultures is initiated exclusively in localized zones that are characterized by high neuronal density but also by recurrent and inhibitory network connections. We demonstrate that initiation zones compete in driving network activity in a winner-takes-most scenario.


2021 ◽  
Author(s):  
Maryna Psol ◽  
Sofia Guerin Darvas ◽  
Kristian Leite ◽  
Sameehan U Mahajani ◽  
Mathias Bähr ◽  
...  

Abstract ß-Synuclein (ß-Syn) has long been considered to be an attenuator for the neuropathological effects caused by the Parkinson’s disease-related α-Synuclein (α-Syn) protein. However, recent studies demonstrated that overabundant ß-Syn can form aggregates and induce neurodegeneration in CNS neurons in vitro and in vivo, albeit at a slower pace as compared to α-Syn. Here we demonstrate that ß-Syn mutants V70M, detected in a sporadic case of Dementia with Lewy Bodies (DLB), and P123H, detected in a familial case of DLB, robustly aggravate the neurotoxic potential of ß-Syn. Intriguingly, the two mutations trigger mutually exclusive pathways. ß-Syn V70M enhances morphological mitochondrial deterioration and degeneration of dopaminergic and non-dopaminergic neurons, but has no influence on neuronal network activity. Conversely, ß-Syn P123H silences neuronal network activity, but does not aggravate neurodegeneration. ß-Syn WT, V70M and P123H formed proteinase K (PK) resistant intracellular fibrils within neurons, albeit with less stable C-termini as compared to α-Syn. Under cell free conditions, ß-Syn V70M demonstrated a much slower pace of fibril formation as compared to WT ß-Syn, and P123H fibrils present with a unique phenotype characterized by large numbers of short, truncated fibrils. Thus, it is possible that V70M and P123H cause structural alterations in ß-Syn, that are linked to their distinct neuropathological profiles. The extent of the lesions caused by these neuropathological profiles is almost identical to that of overabundant α-Syn, and thus likely to be directly involved into etiology of DLB. Over all, this study provides insights into distinct disease mechanisms caused by mutations of ß-Syn.


2008 ◽  
Vol 99 (3) ◽  
pp. 1394-1407 ◽  
Author(s):  
Sarah Potez ◽  
Matthew E. Larkum

Understanding the impact of active dendritic properties on network activity in vivo has so far been restricted to studies in anesthetized animals. However, to date no study has been made to determine the direct effect of the anesthetics themselves on dendritic properties. Here, we investigated the effects of three types of anesthetics commonly used for animal experiments (urethane, pentobarbital and ketamine/xylazine). We investigated the generation of calcium spikes, the propagation of action potentials (APs) along the apical dendrite and the somatic firing properties in the presence of anesthetics in vitro using dual somatodendritic whole cell recordings. Calcium spikes were evoked with dendritic current injection and high-frequency trains of APs at the soma. Surprisingly, we found that the direct actions of anesthetics on calcium spikes were very different. Two anesthetics (urethane and pentobarbital) suppressed dendritic calcium spikes in vitro, whereas a mixture of ketamine and xylazine enhanced them. Propagation of spikes along the dendrite was not significantly affected by any of the anesthetics but there were various changes in somatic firing properties that were highly dependent on the anesthetic. Last, we examined the effects of anesthetics on calcium spike initiation and duration in vivo using high-frequency trains of APs generated at the cell body. We found the same anesthetic-dependent direct effects in addition to an overall reduction in dendritic excitability in anesthetized rats with all three anesthetics compared with the slice preparation.


2021 ◽  
Author(s):  
Alexei M. Bygrave ◽  
Ayesha Sengupta ◽  
Ella P. Jackert ◽  
Mehroz Ahmed ◽  
Beloved Adenuga ◽  
...  

Synapses in the brain exhibit cell–type–specific differences in basal synaptic transmission and plasticity. Here, we evaluated cell–type–specific differences in the composition of glutamatergic synapses, identifying Btbd11, as an inhibitory interneuron–specific synapse–enriched protein. Btbd11 is highly conserved across species and binds to core postsynaptic proteins including Psd–95. Intriguingly, we show that Btbd11 can undergo liquid–liquid phase separation when expressed with Psd–95, supporting the idea that the glutamatergic post synaptic density in synapses in inhibitory and excitatory neurons exist in a phase separated state. Knockout of Btbd11 from inhibitory interneurons decreased glutamatergic signaling onto parvalbumin–positive interneurons. Further, both in vitro and in vivo, we find that Btbd11 knockout disrupts network activity. At the behavioral level, Btbd11 knockout from interneurons sensitizes mice to pharmacologically induced hyperactivity following NMDA receptor antagonist challenge. Our findings identify a cell–type–specific protein that supports glutamatergic synapse function in inhibitory interneurons–with implication for circuit function and animal behavior.


1995 ◽  
Vol 73 (9) ◽  
pp. 1295-1311 ◽  
Author(s):  
Dominique Debanne ◽  
Daniel E. Shulz ◽  
Yves Frégnac

We present comparative experimental evidence for the induction of synaptic potentiation and depression in organotypic cultures of hippocampus and in visual cortex in vitro and in vivo. The effects of associative pairings on the efficacy of synaptic transmission are analyzed as a function of the temporal delay between presynaptic activity and post-synaptic changes imposed in membrane potential. Synchronous association at a low temporal frequency (<0.5 Hz) between presynaptic input and postsynaptic depolarization resulted in homosynaptic potentiation of functionally identified postsynaptic potentials in the three types of preparation. Synchronous pairing of afferent activity with hyperpolarization of the postsynaptic cell resulted in homosynaptic depression in visual cortex in vivo and in vitro. An associative form of depression was induced in hippocampus when the test input was followed repeatedly with a fixed-delay postsynaptic depolarization imposed either by intracellular current injection or synaptically. The latter process might play a significant role in heterosynaptic plasticity in visual cortex in vivo and in vitro, if it is assumed that associative depression still operates in visual cortex a few seconds after the initial surge of calcium in the postsynaptic cell. We conclude that the precise timing between presynaptic activity and polarization changes in postsynaptic membrane potential up- and down-regulates the efficacy of active pathways.Key words: synaptic potentiation, synaptic depression, asynchrony, covariance, supervised learning.


1980 ◽  
Vol 238 (2) ◽  
pp. E157-E166 ◽  
Author(s):  
M. J. Harper ◽  
L. W. Coons ◽  
D. A. Radicke ◽  
B. J. Hodgson ◽  
G. Valenzuela

Contractile activity of the ampulla of rabbit oviducts removed 24 h after an ovulating injection was studied in vitro. Spontaneous activity, field-stimulated activity, and response to phenylephrine were studied in normal, reversed, and scraped (endosalpinx removed) sections of tissues in the presence or absence of inhibitors of prostaglandin synthetase (8 or 51 micrograms/ml indomethacin or 10 or 100 micrograms/ml 5,8,11,14-eicosatetraynoic acid (ETA)). The effects of in vivo treatment with 10 mg/kg of indomethacin on the same responses were examined. Scraped tissues produced more prostaglandin E and F (measured by radioimmunoassay) than did normal tissues, and this production was suppressed by 10 micrograms/ml of indomethacin or 100 micrograms/ml of ETA. Production of prostaglandin by normal tissues was not depressed by these compounds in vitro, but was significantly reduced by pretreatment of the animals with indomethacin in vivo. In the absence of the endosalpinx, the myosalpinx exhibited spontaneous activity and responded to field stimulation and phenylephrine. Scraped and reversed tissues, however, showed a faster decline in response to field stimulation than normal tissues, and this was due to the traumatization. By contrast, traumatization increased the sensitivity of the tissue to respond to phenylephrine. Inhibition of prostaglandin synthetase by low doses of indomethacin or ETA prevented desensitization of the tissue to field stimulation, but this desensitization was little affected by the higher doses of indomethacin in vitro or in vivo. ETA did not affect the phenylephrine dose-response curves and nor did 8 micrograms/ml of indomethacin, whereas the high dose was inhibitory. Spontaneous activity was only affected by the in vivo pretreatment with indomethacin, which prevented the decline in activity of scraped tissue with time.


Sign in / Sign up

Export Citation Format

Share Document