scholarly journals 2,3-Dihydroxy-6-Nitro-7-Sulfamoyl-Benzo(f)Quinoxaline Reduces Glial Loss and Acute White Matter Pathology after Experimental Spinal Cord Contusion

1999 ◽  
Vol 19 (1) ◽  
pp. 464-475 ◽  
Author(s):  
Lisa J. Rosenberg ◽  
Yang D. Teng ◽  
Jean R. Wrathall
2007 ◽  
Vol 58 (2) ◽  
pp. 253-260 ◽  
Author(s):  
Joong Hee Kim ◽  
David N. Loy ◽  
Hsiao-Fang Liang ◽  
Kathryn Trinkaus ◽  
Robert E. Schmidt ◽  
...  

Neuroscience ◽  
2014 ◽  
Vol 260 ◽  
pp. 227-239 ◽  
Author(s):  
R.E. Ward ◽  
W. Huang ◽  
M. Kostusiak ◽  
P.N. Pallier ◽  
A.T. Michael-Titus ◽  
...  

PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0249981
Author(s):  
Lukasz P. Slomnicki ◽  
George Wei ◽  
Darlene A. Burke ◽  
Emily R. Hodges ◽  
Scott A. Myers ◽  
...  

The circadian gene expression rhythmicity drives diurnal oscillations of physiological processes that may determine the injury response. While outcomes of various acute injuries are affected by the time of day at which the original insult occurred, such influences on recovery after spinal cord injury (SCI) are unknown. We report that mice receiving moderate, T9 contusive SCI at ZT0 (zeitgeber time 0, time of lights on) and ZT12 (time of lights off) showed similar hindlimb function recovery in the Basso mouse scale (BMS) over a 6 week post-injury period. In an independent study, no significant differences in BMS were observed after SCI at ZT18 vs. ZT6. However, the ladder walking test revealed modestly improved performance for ZT18 vs. ZT6 mice at week 6 after injury. Consistent with those minor effects on functional recovery, terminal histological analysis revealed no significant differences in white matter sparing at the injury epicenter. Likewise, blood-spinal cord barrier disruption and neuroinflammation appeared similar when analyzed at 1 week post injury at ZT6 or ZT18. Therefore, locomotor recovery after thoracic contusive SCI is not substantively modulated by the time of day at which the neurotrauma occurred.


2005 ◽  
Vol 34 (6) ◽  
pp. 397-410 ◽  
Author(s):  
Wen-Lang Lin ◽  
Cindy Zehr ◽  
Jada Lewis ◽  
Michael Hutton ◽  
Shu-Hui Yen ◽  
...  

Glia ◽  
2010 ◽  
pp. NA-NA ◽  
Author(s):  
Friederike Knerlich-Lukoschus ◽  
Beata von der Ropp-Brenner ◽  
Ralph Lucius ◽  
Hubertus Maximilian Mehdorn ◽  
Janka Held-Feindt

2014 ◽  
Vol 31 (9) ◽  
pp. 857-871 ◽  
Author(s):  
Daniel Garcia-Ovejero ◽  
Susana González ◽  
Beatriz Paniagua-Torija ◽  
Analía Lima ◽  
Eduardo Molina-Holgado ◽  
...  

2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Huiyuan Ji ◽  
Yuxin Zhang ◽  
Chen Chen ◽  
Hui Li ◽  
Bingqiang He ◽  
...  

Abstract Background Astrocytes are the predominant glial cell type in the central nervous system (CNS) that can secrete various cytokines and chemokines mediating neuropathology in response to danger signals. D-dopachrome tautomerase (D-DT), a newly described cytokine and a close homolog of macrophage migration inhibitory factor (MIF) protein, has been revealed to share an overlapping function with MIF in some ways. However, its cellular distribution pattern and mediated astrocyte neuropathological function in the CNS remain unclear. Methods A contusion model of the rat spinal cord was established. The protein levels of D-DT and PGE2 synthesis-related proteinase were assayed by Western blot and immunohistochemistry. Primary astrocytes were stimulated by different concentrations of D-DT in the presence or absence of various inhibitors to examine relevant signal pathways. The post-injury locomotor functions were assessed using the Basso, Beattie, and Bresnahan (BBB) locomotor scale. Results D-DT was inducibly expressed within astrocytes and neurons, rather than in microglia following spinal cord contusion. D-DT was able to activate the COX2/PGE2 signal pathway of astrocytes through CD74 receptor, and the intracellular activation of mitogen-activated protein kinases (MAPKs) was involved in the regulation of D-DT action. The selective inhibitor of D-DT was efficient in attenuating D-DT-induced astrocyte production of PGE2 following spinal cord injury, which contributed to the improvement of locomotor functions. Conclusion Collectively, these data reveal a novel inflammatory activator of astrocytes following spinal cord injury, which might be beneficial for the development of anti-inflammation drug in neuropathological CNS.


Sign in / Sign up

Export Citation Format

Share Document