scholarly journals Highly Specific Neuron Loss Preserves Lateral Inhibitory Circuits in the Dentate Gyrus of Kainate-Induced Epileptic Rats

1999 ◽  
Vol 19 (21) ◽  
pp. 9519-9529 ◽  
Author(s):  
Paul S. Buckmaster ◽  
Ana L. Jongen-Rêlo
2017 ◽  
Vol 105 ◽  
pp. 221-234 ◽  
Author(s):  
Gregory J. Remigio ◽  
Jaycie L. Loewen ◽  
Sage Heuston ◽  
Colin Helgeson ◽  
H. Steve White ◽  
...  

Author(s):  
Thomas W. Mitchell ◽  
Paul S. Buckmaster ◽  
Edward A. Hoover ◽  
L. Ray Whalen ◽  
F. Edward Dudek

Cell Reports ◽  
2021 ◽  
Vol 36 (8) ◽  
pp. 109572
Author(s):  
Mora B. Ogando ◽  
Olivia Pedroncini ◽  
Noel Federman ◽  
Sebastián A. Romano ◽  
Luciano A. Brum ◽  
...  

2000 ◽  
Vol 83 (2) ◽  
pp. 693-704 ◽  
Author(s):  
Michael Lynch ◽  
Thomas Sutula

Repeated seizures induce mossy fiber axon sprouting, which reorganizes synaptic connectivity in the dentate gyrus. To examine the possibility that sprouted mossy fiber axons may form recurrent excitatory circuits, connectivity between granule cells in the dentate gyrus was examined in transverse hippocampal slices from normal rats and epileptic rats that experienced seizures induced by kindling and kainic acid. The experiments were designed to functionally assess seizure-induced development of recurrent circuitry by exploiting information available about the time course of seizure-induced synaptic reorganization in the kindling model and detailed anatomic characterization of sprouted fibers in the kainic acid model. When recurrent inhibitory circuits were blocked by the GABAAreceptor antagonist bicuculline, focal application of glutamate microdrops at locations in the granule cell layer remote from the recorded granule cell evoked trains of excitatory postsynaptic potentials (EPSPs) and population burst discharges in epileptic rats, which were never observed in slices from normal rats. The EPSPs and burst discharges were blocked by bath application of 1 μM tetrodotoxin and were therefore dependent on network-driven synaptic events. Excitatory connections were detected between blades of the dentate gyrus in hippocampal slices from rats that experienced kainic acid–induced status epilepticus. Trains of EPSPs and burst discharges were also evoked in granule cells from kindled rats obtained after ≥1 wk of kindled seizures, but were not evoked in slices examined 24 h after a single afterdischarge, before the development of sprouting. Excitatory connectivity between blades of the dentate gyrus was also assessed in slices deafferented by transection of the perforant path, and bathed in artificial cerebrospinal fluid (ACSF) containing bicuculline to block GABAA receptor–dependent recurrent inhibitory circuits and 10 mM [Ca2+]o to suppress polysynaptic activity. Low-intensity electrical stimulation of the infrapyramidal blade under these conditions failed to evoke a response in suprapyramidal granule cells from normal rats ( n = 15), but in slices from epileptic rats evoked an EPSP at a short latency (2.59 ± 0.36 ms) in 5 of 18 suprapyramidal granule cells. The results are consistent with formation of monosynaptic excitatory connections between blades of the dentate gyrus. Recurrent excitatory circuits developed in the dentate gyrus of epileptic rats in a time course that corresponded to the development of mossy fiber sprouting and demonstrated patterns of functional connectivity corresponding to anatomic features of the sprouted mossy fiber pathway.


1997 ◽  
Vol 77 (5) ◽  
pp. 2685-2696 ◽  
Author(s):  
Paul S. Buckmaster ◽  
F. Edward Dudek

Buckmaster, Paul S. and F. Edward Dudek. Network properties of the dentate gyrus in epileptic rats with hilar neuron loss and granule cell axon reorganization. J. Neurophysiol. 77: 2685–2696, 1997. Neuron loss in the hilus of the dentate gyrus and granule cell axon reorganization have been proposed as etiologic factors in human temporal lobe epilepsy. To explore these possible epileptogenic mechanisms, electrophysiological and anatomic methods were used to examine the dentate gyrus network in adult rats that had been treated systemically with kainic acid. All kainate-treated rats, but no age-matched vehicle-treated controls, were observed to have spontaneous recurrent motor seizures beginning weeks to months after exposure to kainate. Epileptic kainate-treated rats and control animals were anesthetized for field potential recording from the dentate gyrus in vivo. Epileptic kainate-treated rats displayed spontaneous positivities (“dentate electroencephalographic spikes”) with larger amplitude and higher frequency than those in control animals. After electrophysiological recording, rats were perfused and their hippocampi were processed for Nissl and Timm staining. Epileptic kainate-treated rats displayed significant hilar neuron loss and granule cell axon reorganization. It has been hypothesized that hilar neuron loss reduces lateral inhibition in the dentate gyrus, thereby decreasing seizure threshold. To assess lateral inhibition, simultaneous recordings were obtained from the dentate gyrus in different hippocampal lamellae, separated by 1 mm. The perforant path was stimulated with paired-pulse paradigms, and population spike amplitudes were measured. Responses were obtained from one lamella while a recording electrode in a distant lamella leaked saline or the γ-aminobutyric acid-A receptor antagonist bicuculline. Epileptic kainate-treated and control rats both showed significantly more paired-pulse inhibition when a lateral lamella was hyperexcitable. To assess seizure threshold in the dentate gyrus, two techniques were used. Measurement of stimulus threshold for evoking maximal dentate activation revealed significantly higher thresholds in epileptic kainate-treated rats compared with controls. In contrast, epileptic kainate-treated rats were more likely than controls to discharge spontaneous bursts of population spikes and to display stimulus-triggered afterdischarges when a focal region of the dentate gyrus was disinhibited with bicuculline. These spontaneous bursts and afterdischarges were confined to the disinhibited region and did not spread to other septotemporal levels of the dentate gyrus. Epileptic kainate-treated rats that displayed spontaneous bursts and/or afterdischarges had significantly larger percentages of Timm staining in the granule cell and molecular layers than epileptic kainate-treated rats that failed to show spontaneous bursts or afterdischarges. In summary, this study reveals functional abnormalities in the dentate gyri of epileptic kainate-treated rats; however, lateral inhibition persists, suggesting that vulnerable hilar neurons are not necessary for generating lateral inhibition in the dentate gyrus.


Dose-Response ◽  
2021 ◽  
Vol 19 (4) ◽  
pp. 155932582110577
Author(s):  
Lei Guo ◽  
Qian-Qian Du ◽  
Piao-Qin Cheng ◽  
Ting-Ting Yang ◽  
Chao-Qun Xing ◽  
...  

Background: Brain exposure to ionizing radiation during the radiotherapy of brain tumor or metastasis of peripheral cancer cells to the brain has resulted in cognitive dysfunction by reducing neurogenesis in hippocampus. The water extract of Lycium barbarum berry (Lyc), containing water-soluble Lycium barbarum polysaccharides and flavonoids, can protect the neuronal injury by reducing oxidative stress and suppressing neuroinflammation. Reseach Design: To demonstrate the long-term radioprotective effect of Lyc, we evaluated the neurobehavioral alterations and the numbers of NeuN, calbindin (CB), and parvalbumin (PV) immunopositive hippocampal neurons in BALB/c mice after acute 5.5 Gy radiation with/without oral administration of Lyc at the dosage of 10 g/kg daily for 4 weeks. Results: The results showed that Lyc could improve irradiation-induced animal weight loss, depressive behaviors, spatial memory impairment, and hippocampal neuron loss. Immunohistochemistry study demonstrated that the loss of NeuN-immunopositive neuron in the hilus of the dentate gyrus, CB-immunopositive neuron in CA1 strata radiatum, lacunosum moleculare and oriens, and PV-positive neuron in CA1 stratum pyramidum and stratum granulosum of the dentate gyrus after irradiation were significantly improved by Lyc treatment. Conclusion: The neuroprotective effect of Lyc on those hippocampal neurons may benefit the configuration of learning related neuronal networks and then improve radiation induced neurobehavioral changes such as cognitive impairment and depression. It suggests that  Lycium barbarum berry may be an alternative food supplement to prevent radiation-induced neuron loss and neuropsychological disorders.


Hippocampus ◽  
2016 ◽  
Vol 26 (6) ◽  
pp. 763-778 ◽  
Author(s):  
Liam J. Drew ◽  
Mazen A. Kheirbek ◽  
Victor M. Luna ◽  
Christine A. Denny ◽  
Megan A. Cloidt ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document