lycium barbarum
Recently Published Documents


TOTAL DOCUMENTS

975
(FIVE YEARS 528)

H-INDEX

54
(FIVE YEARS 15)

2022 ◽  
Vol 293 ◽  
pp. 110681
Author(s):  
Xia Han ◽  
Xiang Du ◽  
Yunxuan Wu ◽  
Man Wei ◽  
Yuan Gu ◽  
...  

2022 ◽  
Vol 89 ◽  
pp. 104929
Author(s):  
Miaomiao Liu ◽  
Zihan Sun ◽  
Chenshan Shi ◽  
Jiayue Wang ◽  
Tao Wang ◽  
...  

2022 ◽  
Vol 15 (1) ◽  
pp. 23-30
Author(s):  
Yuan-Yuan Gao ◽  
◽  
Jie Huang ◽  
Wu-Jun Li ◽  
Yang Yu ◽  
...  

AIM: To investigate the relationship between autophagy and apoptosis in photoinduced injuries in retinal pigment epithelium (RPE) cells and how Lycium barbarum polysaccharide (LBP) contributes to the increased of RPE cells to photoinduced autophagy. METHODS: In vitro cultures of human RPE strains (ARPE-19) were prepared and randomly divided into the blank control, model, low-dose LBP, middle-dose LBP, high-dose LBP, and 3-methyladenine (3MA) groups. The viability of the RPE cells and apoptosis levels in each group were tested through cell counting kit-8 (CCK8) method with a flow cytometer (Annexin V/PI double staining technique). The expression levels of LC3II, LC3I, and P62 proteins were detected with the immunofluorescence method. The expression levels of beclin1, LC3, P62, PI3K, P-mTOR, mTOR, P-Akt, and Akt proteins were tested through Western blot. RESULTS: LBP considerably strengthens cell viability and inhibits the apoptosis of RPE cells after photoinduction. The PI3K/Akt/mTOR signal pathway is activated because of the upregulation of the phosphorylation levels of Akt and mTOR proteins, and thus autophagy is inhibited. CONCLUSION: LBP can inhibit the excessive autophagy in RPE cells by activating the PI3K/Akt/mTOR signaling pathways and thereby protect RPE cells from photoinduced injuries.


2022 ◽  
Vol 15 (1) ◽  
pp. 9-14
Author(s):  
Jing-Xiang Zhong ◽  
◽  
Kang-Sheng Wu ◽  
Guo-Cheng Yu ◽  
Lei-Lei Tu ◽  
...  

AIM: To investigate the effect of nano-selenium loaded with different concentrations of lycium barbarum polysaccharide (LBP-SeNPs) on the proliferation of human lens epithelial cells (HLECs) from UV irradiation. METHODS: LBP-SeNPs were prepared and their particle size was detected. HLECs (SRA01/04) were irradiated with UVB for different time (0, 10, 20, 30, 40, 50, 60min) to construct a damaged model, the survival rate of cells was determined by methylthiazol tetrazolium (MTT) assay. The 4',6-Diamidine-2'-phenylindole dihydrochloride (DAPI) staining was used to observe the status of cell nucleus and drug entering cytoplasm through cell membrane in SRA01/04 cells after adding LBP-SENPS loaded with coumarin fluorescence agent 24h under fluorescence microscope. SRA01/04 normal and UVB-damaged cells were treated with different amounts of LBP-SeNPs at different concentrations, cells proliferation were observed. RESULTS: The particle size of LBP-SeNPs was stable in the range of 150-200 nm. The survival rate changes with time after UVB irradiation were statistically significant. The 10min of UVB exposure as the time was chosen to construct the cell damage model. With DAPI staining, LBP-SeNPs were observed to enter the cytoplasm through the cell membrane under fluorescence inverted microscope. Cytotoxicity of SRA01/04 at different concentrations of LBP-SeNPs were measured. Cell survival rate was statistically different compared with the control group. The higher the loading concentration of LBP in nano-Se drugs was, the higher the cell proliferation rate was (P<0.05). The lower the concentration of LBP-SeNPs, the higher the cell proliferation rate, showing a negative growth trend (P<0.05). The group with the highest average cell proliferation rate was 0.5 µmol/L 2.0 mg/mL LBP-SeNPs (128.80%). When the 2.0 mg/mL LBP-SeNPs group was selected for cell photography, the cell density was higher at 0.5 μmol/L. With the increase of concentration, SRA01/04 cells appeared more cytoplasm dehydration, cell shrinkage and apoptotic bodies, and cell density decreased. CONCLUSION: LBP-SeNPs has moderate particle size and good stability. LBP-SeNPs can protect HLECs (SRA01/04) from UVB-induced damage, and the cell proliferation rate is further increased with increasing the amount of loaded LBP and decreasing nano-selenium concentration.


2022 ◽  
Vol 13 ◽  
Author(s):  
Jinfeng Liu ◽  
Larry Baum ◽  
Shasha Yu ◽  
Youhong Lin ◽  
Guoying Xiong ◽  
...  

In Alzheimer's disease (AD), amyloid β deposition-induced hippocampal synaptic dysfunction generally begins prior to neuronal degeneration and memory impairment. Lycium barbarum extracts (LBE) have been demonstrated to be neuroprotective in various animal models of neurodegeneration. In this study, we aimed to investigate the effects of LBE on the synapse loss in AD through the avenue of the retina in a triple transgenic mouse model of AD (3xTg-AD). We fed 3xTg-AD mice with low (200 mg/kg) or high (2 g/kg) dose hydrophilic LBE daily for 2 months from the starting age of 4- or 6-month-old. For those started at 6 month age, at 1 month (though not 2 months) after starting treatment, mice given high dose LBE showed a significant increase of a wave and b wave in scotopic ERG. After 2 months of treatment with high dose LBE, calpain-2, calpain-5, and the oxidative RNA marker 8-OHG were downregulated, and presynaptic densities in the inner plexiform layer but not the outer plexiform layer of the retina were significantly increased, suggesting the presynaptic structure of retina was preserved. Our results indicate that LBE feeding may preserve synapse stability in the retina of 3xTg-AD mice, probably by decreasing both oxidative stress and intracellular calcium influx. Thus, LBE might have potential as a neuroprotectant for AD through synapse preservation.


2022 ◽  
Vol 8 ◽  
Author(s):  
Haitao Zhou ◽  
Shanshan Ding ◽  
Chuanxin Sun ◽  
Jiahui Fu ◽  
Dong Yang ◽  
...  

Lycium barbarum berry (Ningxia Gouqi, Fructus lycii, goji berry, or wolfberry), as a traditional Chinese herb, was recorded beneficial for longevity in traditional Chinese medical scriptures and currently is a natural dietary supplement worldwide. However, under modern experimental conditions, the longevity effect of L. barbarum berry and the underlying mechanisms have been less studied. Here, we reported that total water extracts of L. barbarum berry (LBE), which contains 22% polysaccharides and other components, such as anthocyanins, extended the lifespan of Caenorhabditis elegans without side effects on worm fertility and pharyngeal pumping. Interestingly, we found that the lifespan extension effect was more prominent in worms with shorter mean lifespan as compared to those with longer mean lifespan. Furthermore, we showed that the lifespan extension effect of LBE depended on deacetylase sir-2.1. Remarkably, LBE rescued heat shock transcription factor-1 (hsf-1) deficiency in wild-type worms with different mean lifespans, and this effect also depended on sir-2.1. In addition, we found that LBE extended lifespan and alleviated toxic protein aggregation in neurodegenerative worms with hsf-1 deficiency. Our study suggested that LBE may be a potential antiaging natural dietary supplement especially to individuals with malnutrition or chronic diseases and a potential therapeutic agent for neurodegenerative diseases characterized by hsf-1 deficiency.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Yahong Zhang ◽  
Jiaqi Qin ◽  
Yan Wang ◽  
Tongning Zhou ◽  
Ningchuan Feng ◽  
...  

AbstractThe berries of Lycium barbarum L. (Goji) are widely used as a Chinese traditional herbal medicine and functional food because of their reported beneficial pharmacological effects. However, there are reports of Goji berries being contaminated by chemical residues that could pose a hazard to humans. In this study, samples of L. barbarum L. berries were collected from plantations in a genuine production area and supermarkets in Ningxia, China. The major hazardous chemicals, including pesticides (dichlorvos, omethoate, cypermethrin, fenvalerate, malathion, and deltamethrin) and metals (lead (Pb), cadmium (Cd), copper (Cu), nickel (Ni), zinc (Zn), and arsenic (As)), were quantified by gas chromatography and inductively coupled plasma-optical emission spectrometry. In addition, associated daily exposures and health risks were determined using deterministic and probabilistic assessments. The levels of five pesticides from the plantation samples were considerably lower than the maximum residue limits; only dichlorvos was detected in the supermarket samples, and deltamethrin was not detected in any samples. Cu, Zn, As, Pb, Ni and Cd were detected in samples from both sources. The hazard quotient values of individual hazardous chemicals and the hazard index of combined hazardous chemicals were considerably less than 1, indicating the absence of a non-carcinogenic effect of hazardous chemical exposures through Goji berry consumption. The R value of As was much less than 10–6, which shows that consumption of the Goji berries had no obvious carcinogenic risks. The potentially harmful effects of the L. barbarum L. are more likely from berries obtained from plantations than those from supermarkets, and metal exposure is more dangerous than pesticide exposure. However, on the basis of our analysis, no population would be exposed hazardous chemicals exceeding existing standards, and the factors most affecting the health risk were exposure frequency and As content.


2022 ◽  
Vol 18 (1) ◽  
Author(s):  
Ruixue Zhang ◽  
Hemeng Dong ◽  
Pengpeng Zhao ◽  
Chunmei Shang ◽  
Hang Qi ◽  
...  

Abstract Background Semen cryopreservation has become an essential tool for conservation efforts of the giant panda (Ailuropoda melanoleuca); however, it is severely detrimental to sperm quality. Evidence has shown that antioxidants have the potential to reverse cryopreservation-induced damage in sperm. The purpose of this study was to screen effective antioxidants that could retain sperm quality during cryopreservation and to determine the optimal dose. Seven antioxidant groups, including resveratrol (RSV = 50 μM, RSV = 100 μM, RSV = 150 μM), lycium barbarum polysaccharide (LBP = 2 mg/mL, LBP = 4 mg/mL), laminaria japonica polysaccharides (LJP = 1 mg/mL) or combination (LBP = 2 mg/mL, LJP = 1 mg/mL and RSV = 100 μM) were assessed. Results RSV, LBP, LJP, or a combination of RSV, LBP, and LJP added to the freezing medium significantly improved sperm progressive motility, plasma membrane integrity, acrosome integrity, and mitochondrial activity during the cryopreservation process. Furthermore, the activities of glutathione peroxidase and superoxide dismutase were also improved. The levels of reactive oxygen species and malondialdehyde in semen were notably reduced. Hyaluronidase activity and acrosin activity were significantly increased in LBP-treated sperm. However, sperm total motility and DNA integrity were not significantly different between the groups. Conclusions RSV (50 μM) or LBP (2 mg/mL) are the best candidate antioxidants for inclusion in the freezing medium to improve the quality of giant panda spermatozoa during semen cryopreservation.


Sign in / Sign up

Export Citation Format

Share Document