scholarly journals The gliopeptide ODN, a ligand for the benzodiazepine site of GABAA receptors, boosts functional recovery after stroke

2021 ◽  
pp. JN-RM-2255-20
Author(s):  
Rhita Lamtahri ◽  
Mahmoud Hazime ◽  
Emma K Gowing ◽  
Raghavendra Y. Nagaraja ◽  
Julie Maucotel ◽  
...  
2005 ◽  
Vol 102 (4) ◽  
pp. 783-792 ◽  
Author(s):  
Dirk Rüsch ◽  
Stuart A. Forman

Background Classic benzodiazepine agonists induce their clinical effects by binding to a site on gamma-aminobutyric acid type A (GABAA) receptors and enhancing receptor activity. There are conflicting data regarding whether the benzodiazepine site is allosterically coupled to gamma-aminobutyric acid binding versus the channel open-close (gating) equilibrium. The authors tested the hypothesis that benzodiazepine site ligands modulate alpha1beta2gamma2L GABAA receptor gating both in the absence of orthosteric agonists and when the orthosteric sites are occupied. Methods GABAA receptors were recombinantly expressed in Xenopus oocytes and studied using two-microelectrode voltage clamp electrophysiology. To test gating effects in the absence of orthosteric agonist, the authors used spontaneously active GABAA receptors containing a leucine-to-threonine mutation at residue 264 on the alpha1 subunit. To examine effects on gating when orthosteric sites were fully occupied, they activated wild-type receptors with high concentrations of a partial agonist, piperidine-4-sulfonic acid. Results In the absence of orthosteric agonists, the channel activity of alpha1L264Tbeta2gamma2L receptors was increased by diazepam and midazolam and reduced by the inverse benzodiazepine agonist FG7142. Flumazenil displayed very weak agonism and blocked midazolam from further activating mutant channels. In wild-type receptors activated with saturating concentrations of piperidine-4-sulfonic acid, midazolam increased maximal efficacy. Conclusions Independent of orthosteric site occupancy, classic benzodiazepines modulate the gating equilibrium in alpha1beta2gamma2L GABAA receptors and are therefore allosteric coagonists. A Monod-Wyman-Changeux coagonist gating model quantitatively predicts these effects, suggesting that benzodiazepines minimally alter orthosteric ligand binding.


2014 ◽  
Vol 1554 ◽  
pp. 36-48 ◽  
Author(s):  
Aleksandar Lj. Obradović ◽  
Srđan Joksimović ◽  
Michael M. Poe ◽  
Joachim Ramerstorfer ◽  
Zdravko Varagic ◽  
...  

2008 ◽  
Vol 16 (14) ◽  
pp. 6936-6948 ◽  
Author(s):  
Erik Lager ◽  
Jakob Nilsson ◽  
Elsebet Østergaard Nielsen ◽  
Mogens Nielsen ◽  
Tommy Liljefors ◽  
...  

2004 ◽  
Vol 14 (11) ◽  
pp. 2871-2875 ◽  
Author(s):  
Helen J. Szekeres ◽  
John R. Atack ◽  
Mark S. Chambers ◽  
Susan M. Cook ◽  
Alison J. Macaulay ◽  
...  

2019 ◽  
Vol 2019 (4) ◽  
Author(s):  
Delia Belelli ◽  
Tim G. Hales ◽  
Jeremy J. Lambert ◽  
Bernhard Luscher ◽  
Richard Olsen ◽  
...  

The GABAA receptor is a ligand-gated ion channel of the Cys-loop family that includes the nicotinic acetylcholine, 5-HT3 and strychnine-sensitive glycine receptors. GABAA receptor-mediated inhibition within the CNS occurs by fast synaptic transmission, sustained tonic inhibition and temporally intermediate events that have been termed ‘GABAA, slow’ [41]. GABAA receptors exist as pentamers of 4TM subunits that form an intrinsic anion selective channel. Sequences of six α, three β, three γ, one δ, three ρ, one ε, one π and one θ GABAA receptor subunits have been reported in mammals [273, 232, 231, 278]. The π-subunit is restricted to reproductive tissue. Alternatively spliced versions of many subunits exist (e.g. α4- and α6- (both not functional) α5-, β2-, β3- and γ2), along with RNA editing of the α3 subunit [67]. The three ρ-subunits, (ρ1-3) function as either homo- or hetero-oligomeric assemblies [354, 46]. Receptors formed from ρ-subunits, because of their distinctive pharmacology that includes insensitivity to bicuculline, benzodiazepines and barbiturates, have sometimes been termed GABAC receptors [354], but they are classified as GABAA receptors by NC-IUPHAR on the basis of structural and functional criteria [14, 232, 231].Many GABAA receptor subtypes contain α-, β- and γ-subunits with the likely stoichiometry 2α.2β.1γ [164, 232]. It is thought that the majority of GABAA receptors harbour a single type of α- and β -subunit variant. The α1β2γ2 hetero-oligomer constitutes the largest population of GABAA receptors in the CNS, followed by the α2β3γ2 and α3β3γ2 isoforms. Receptors that incorporate the α4- α5-or α6-subunit, or the β1-, γ1-, γ3-, δ-, ε- and θ-subunits, are less numerous, but they may nonetheless serve important functions. For example, extrasynaptically located receptors that contain α6- and δ-subunits in cerebellar granule cells, or an α4- and δ-subunit in dentate gyrus granule cells and thalamic neurones, mediate a tonic current that is important for neuronal excitability in response to ambient concentrations of GABA [205, 268, 79, 17, 283]. GABA binding occurs at the β+/α- subunit interface and the homologous γ+/α- subunits interface creates the benzodiazepine site. A second site for benzodiazepine binding has recently been postulated to occur at the α+/β- interface ([250]; reviewed by [277]). The particular α-and γ-subunit isoforms exhibit marked effects on recognition and/or efficacy at the benzodiazepine site. Thus, receptors incorporating either α4- or α6-subunits are not recognised by ‘classical’ benzodiazepines, such as flunitrazepam (but see [351]). The trafficking, cell surface expression, internalisation and function of GABAA receptors and their subunits are discussed in detail in several recent reviews [48, 136, 184, 311] but one point worthy of note is that receptors incorporating the γ2 subunit (except when associated with α5) cluster at the postsynaptic membrane (but may distribute dynamically between synaptic and extrasynaptic locations), whereas as those incorporating the d subunit appear to be exclusively extrasynaptic. NC-IUPHAR [14, 232] class the GABAA receptors according to their subunit structure, pharmacology and receptor function. Currently, eleven native GABAA receptors are classed as conclusively identified (i.e., α1β2γ2, α1βγ2, α3βγ2, α4βγ2, α4β2δ, α4β3δ, α5βγ2, α6βγ2, α6β2δ, α6β3δ and ρ) with further receptor isoforms occurring with high probability, or only tentatively [232, 231]. It is beyond the scope of this Guide to discuss the pharmacology of individual GABAA receptor isoforms in detail; such information can be gleaned in the reviews [14, 91, 164, 169, 140, 273, 212, 232, 231] and [8, 7]. Agents that discriminate between α-subunit isoforms are noted in the table and additional agents that demonstrate selectivity between receptor isoforms, for example via β-subunit selectivity, are indicated in the text below. The distinctive agonist and antagonist pharmacology of ρ receptors is summarised in the table and additional aspects are reviewed in [354, 46, 141, 219].Several high-resolution cryo-electron microscopy structures have been described in which the full-length human α1β3γ2L GABAA receptor in lipid nanodiscs is bound to the channel-blocker picrotoxin, the competitive antagonist bicuculline, the agonist GABA (γ-aminobutyric acid), and the classical benzodiazepines alprazolam and diazepam [194].


2007 ◽  
Vol 33 (2) ◽  
pp. 332-339 ◽  
Author(s):  
Miroslav M Savić ◽  
Shengming Huang ◽  
Roman Furtmüller ◽  
Terry Clayton ◽  
Sigismund Huck ◽  
...  

2011 ◽  
Vol 19 (1) ◽  
pp. 111-121 ◽  
Author(s):  
Jakob Nilsson ◽  
Ritha Gidlöf ◽  
Elsebet Østergaard Nielsen ◽  
Tommy Liljefors ◽  
Mogens Nielsen ◽  
...  

1998 ◽  
Vol 123 (8) ◽  
pp. 1490-1494 ◽  
Author(s):  
Haesook K. Im ◽  
Wha Bin Im ◽  
Jeffrey F. Pregenzer ◽  
Nancy C. Stratman ◽  
Philip F. VonVoigtlander ◽  
...  

2010 ◽  
Vol 20 (2) ◽  
pp. 192-199 ◽  
Author(s):  
Anand Gaurav ◽  
Mange R. Yadav ◽  
Rajani Giridhar ◽  
Vertika Gautam ◽  
Ranjit Singh

Sign in / Sign up

Export Citation Format

Share Document