scholarly journals Activation of BK and SK Channels by Efferent Synapses on Outer Hair Cells in High-Frequency Regions of the Rodent Cochlea

2015 ◽  
Vol 35 (5) ◽  
pp. 1821-1830 ◽  
Author(s):  
K. N. Rohmann ◽  
E. Wersinger ◽  
J. P. Braude ◽  
S. J. Pyott ◽  
P. A. Fuchs
Author(s):  
Hui Wang ◽  
Hanbo Zhao ◽  
Yujia Chu ◽  
Jiang Feng ◽  
Keping Sun

Abstract High-frequency hearing is particularly important for echolocating bats and toothed whales. Previously, studies of the hearing-related genes Prestin, KCNQ4, and TMC1 documented that adaptive evolution of high-frequency hearing has taken place in echolocating bats and toothed whales. In this study, we present two additional candidate hearing-related genes, Shh and SK2, that may also have contributed to the evolution of echolocation in mammals. Shh is a member of the vertebrate Hedgehog gene family and is required in the specification of the mammalian cochlea. SK2 is expressed in both inner and outer hair cells, and it plays an important role in the auditory system. The coding region sequences of Shh and SK2 were obtained from a wide range of mammals with and without echolocating ability. The topologies of phylogenetic trees constructed using Shh and SK2 were different; however, multiple molecular evolutionary analyses showed that those two genes experienced different selective pressures in echolocating bats and toothed whales compared to non-echolocating mammals. In addition, several nominally significant positively selected sites were detected in the non-functional domain of the SK2 gene, indicating that different selective pressures were acting on different parts of the SK2 gene. This study has expanded our knowledge of the adaptive evolution of high-frequency hearing in echolocating mammals.


2007 ◽  
Vol 97 (4) ◽  
pp. 2930-2936 ◽  
Author(s):  
Stéphane F. Maison ◽  
Lisan L. Parker ◽  
Lucy Young ◽  
John P. Adelman ◽  
Jian Zuo ◽  
...  

Cochlear hair cells express SK2, a small-conductance Ca2+-activated K+ channel thought to act in concert with Ca2+-permeable nicotinic acetylcholine receptors (nAChRs) α9 and α10 in mediating suppressive effects of the olivocochlear efferent innervation. To probe the in vivo role of SK2 channels in hearing, we examined gene expression, cochlear function, efferent suppression, and noise vulnerability in mice overexpressing SK2 channels. Cochlear thresholds, as measured by auditory brain stem responses and otoacoustic emissions, were normal in overexpressers as was overall cochlear morphology and the size, number, and distribution of efferent terminals on outer hair cells. Cochlear expression levels of SK2 channels were elevated eightfold without striking changes in other SK channels or in the α9/α10 nAChRs. Shock-evoked efferent suppression of cochlear responses was significantly enhanced in overexpresser mice as seen previously in α9 overexpresser mice; however, in contrast to α9 overexpressers, SK2 overexpressers were not protected from acoustic injury. Results suggest that efferent-mediated cochlear protection is mediated by other downstream effects of ACh-mediated Ca2+ entry different from those involving SK2-mediated hyperpolarization and the associated reduction in outer hair cell electromotility.


2014 ◽  
Vol 620 ◽  
pp. 248-252
Author(s):  
Qi Jiu Li ◽  
Xian De Zhang ◽  
Ting Ting Xu ◽  
Jiang Xia Yin

Outer hair cells (OHCs) have a unique ability to contract and elongate in response to changes in intracellular potential, and Prestin is the motor protein of the cochlea of the OHCs. It is the first time to invest the Prestin expression in different bat species. To invest Prestin expression in different bat species, which have different frequency, we did the coronal sections’ staining of the cochlea using immunhistochemistry. Experiment was designed to determine if the high-frequency bats’ OHCs have more expression than the low-frequency bats’OHCs. We found that the expression in three species was similar and had no obvious difference. Though the study of bats Prestin evolution suggested that Prestin has accelerating evolution in echolocation bats with high frequency, our we showed that the Prestin expression has nothing to do with the frequency, and the Prestin expression in high-frequency bats and low-frequency bats is similar.


1992 ◽  
Vol 336 (1278) ◽  
pp. 317-324 ◽  

Receptor potentials recorded from outer hair cells (ohc ) and inner hair cells (ihc) in the basal highfrequency turn were com pared. The dc component of the ihc receptor potential is maximized to ensure that ihcs can signal a voltage response to high-frequency tones. The ohc dc component is minimized so that ohcs transduce in the most sensitive region of their operating range. The phase and magnitude of ohc receptor potentials were recorded as an indicator of the magnitude and phase of the energy which is fed back to the basilar membrane to provide the basis for the sharp tuning and fine sensitivity of the cochlea to tones. IHC receptor potentials were recorded to assess the net effect of the feedback on the mechanics of the cochlea. It was concluded that ohcs generate feedback which enhances the ihc responses only at the best frequency. At frequencies below cf, ihc dc responses are elicited only when the ohc ac responses begin to saturate.


Science ◽  
1995 ◽  
Vol 267 (5206) ◽  
pp. 2006-2009 ◽  
Author(s):  
P Dallos ◽  
B. Evans

Sign in / Sign up

Export Citation Format

Share Document