Sensory transduction and frequency selectivity in the basal turn of the guinea-pig cochlea

1992 ◽  
Vol 336 (1278) ◽  
pp. 317-324 ◽  

Receptor potentials recorded from outer hair cells (ohc ) and inner hair cells (ihc) in the basal highfrequency turn were com pared. The dc component of the ihc receptor potential is maximized to ensure that ihcs can signal a voltage response to high-frequency tones. The ohc dc component is minimized so that ohcs transduce in the most sensitive region of their operating range. The phase and magnitude of ohc receptor potentials were recorded as an indicator of the magnitude and phase of the energy which is fed back to the basilar membrane to provide the basis for the sharp tuning and fine sensitivity of the cochlea to tones. IHC receptor potentials were recorded to assess the net effect of the feedback on the mechanics of the cochlea. It was concluded that ohcs generate feedback which enhances the ihc responses only at the best frequency. At frequencies below cf, ihc dc responses are elicited only when the ohc ac responses begin to saturate.

2003 ◽  
Vol 90 (1) ◽  
pp. 444-455 ◽  
Author(s):  
Jiefu Zheng ◽  
Chunfu Dai ◽  
Peter S. Steyger ◽  
Youngki Kim ◽  
Zoltan Vass ◽  
...  

Capsaicin, the vanilloid that selectively activates vanilloid receptors (VRs) on sensory neurons for noxious perception, has been reported to increase cochlear blood flow (CBF). VR-related receptors have also been found in the inner ear. This study aims to address the question as to whether VRs exist in the organ of Corti and play a role in cochlear physiology. Capsaicin or the more potent VR agonist, resiniferatoxin (RTX), was infused into the scala tympani of guinea pig cochlea, and their effects on cochlear sensitivity were investigated. Capsaicin (20 μM) elevated the threshold of auditory nerve compound action potential and reduced the magnitude of cochlear microphonic and electrically evoked otoacoustic emissions. These effects were reversible and could be blocked by a competitive antagonist, capsazepine. Application of 2 μM RTX resulted in cochlear sensitivity alterations similar to that by capsaicin, which could also be blocked by capsazepine. A desensitization phenomenon was observed in the case of prolonged perfusion with either capsaicin or RTX. Brief increase of CBF by capsaicin was confirmed, and the endocochlear potential was not decreased. Basilar membrane velocity (BM) growth functions near the best frequency and BM tuning were altered by capsaicin. Immunohistochemistry study revealed the presence of vanilloid receptor type 1 of the transient receptor potential channel family in the hair cells and supporting cells of the organ of Corti and the spiral ganglion cells of the cochlea. The results indicate that the main action of capsaicin is on outer hair cells and suggest that VRs in the cochlea play a role in cochlear homeostasis.


1975 ◽  
Vol 84 (4) ◽  
pp. 443-458 ◽  
Author(s):  
Catherine A. Smith

Nerve fibers with distinctive branching patterns have been demonstrated in guinea pigs by use of the Golgi stain. The cochlear nerve fibers in the basal turn tend to supply a limited segment of the basilar membrane and have most endings on a single row of hair cells. The efferent olivocochlear nerve fibers ramify in a manner which varies from base to apex. Some efferents which terminate on outer hair cells also give branches which course in the inner spiral bundle. Other nerve fibers were studied in the spiral lamina which did not penetrate into the organ of Corti.


2017 ◽  
Vol 8 (1) ◽  
Author(s):  
Victoria A. Lukashkina ◽  
Snezana Levic ◽  
Andrei N. Lukashkin ◽  
Nicola Strenzke ◽  
Ian J. Russell

Abstract Accelerated age-related hearing loss disrupts high-frequency hearing in inbred CD-1 mice. The p.Ala88Val (A88V) mutation in the gene coding for the gap-junction protein connexin30 (Cx30) protects the cochlear basal turn of adult CD-1Cx30 A88V/A88V mice from degeneration and rescues hearing. Here we report that the passive compliance of the cochlear partition and active frequency tuning of the basilar membrane are enhanced in the cochleae of CD-1Cx30 A88V/A88V compared to CBA/J mice with sensitive high-frequency hearing, suggesting that gap junctions contribute to passive cochlear mechanics and energy distribution in the active cochlea. Surprisingly, the endocochlear potential that drives mechanoelectrical transduction currents in outer hair cells and hence cochlear amplification is greatly reduced in CD-1Cx30 A88V/A88V mice. Yet, the saturating amplitudes of cochlear microphonic potentials in CD-1Cx30 A88V/A88V and CBA/J mice are comparable. Although not conclusive, these results are compatible with the proposal that transmembrane potentials, determined mainly by extracellular potentials, drive somatic electromotility of outer hair cells.


2008 ◽  
Vol 6 (32) ◽  
pp. 279-291 ◽  
Author(s):  
Pavel Mistrík ◽  
Chris Mullaley ◽  
Fabio Mammano ◽  
Jonathan Ashmore

The mammalian inner ear uses its sensory hair cells to detect and amplify incoming sound. It is unclear whether cochlear amplification arises uniquely from a voltage-dependent mechanism (electromotility) associated with outer hair cells (OHCs) or whether other mechanisms are necessary, for the voltage response of OHCs is apparently attenuated excessively by the membrane electrical filter. The cochlea contains many thousands of hair cells organized in extensive arrays, embedded in an electrically coupled system of supporting cells. We have therefore constructed a multi-element, large-scale computational model of cochlear sound transduction to study the underlying potassium (K + ) recirculation. We have included experimentally determined parameters of cochlear macromechanics, which govern sound transduction, and data on hair cells' electrical parameters including tonotopical variation in the membrane conductance of OHCs. In agreement with the experiment, the model predicts an exponential decay of extracellular longitudinal K + current spread. In contrast to the predictions from isolated cells, it also predicts low attenuation of the OHC transmembrane receptor potential (−5 dB per decade) in the 0.2–30 kHz range. This suggests that OHC electromotility could be driven by the transmembrane potential. Furthermore, the OHC electromotility could serve as a single amplification mechanism over the entire hearing range.


2021 ◽  
Author(s):  
Fumiaki Nin ◽  
Samuel Choi ◽  
Takeru Ota ◽  
Zhang Qi ◽  
Hiroshi Hibino

AbstractSound evokes sub-nanoscale vibration within the sensory epithelium. The epithelium contains not only immotile cells but also contractile outer hair cells (OHCs) that actively shrink and elongate synchronously with the sound. However, the in vivo motion of OHCs has remained undetermined. The aim of this work is to perform high-resolution and -accuracy vibrometry in live guinea pigs with an SC-introduced spectral-domain optical coherence tomography system (SD-OCT). In this study, to reveal the effective contribution of SC source in the recording of the low reflective materials with the short total acquisition time, we compare the performances of the SC-introduced SD-OCT (SCSD-OCT) to that of the conventional SD-OCT. As inanimate comparison objects, we record a mirror, a piezo actuator, and glass windows. For the measurements in biological materials, we use in/ex vivo guinea pig cochleae. Our study achieved the optimization of a SD-OCT system for high-resolution in vivo vibrometry in the cochlear sensory epithelium, termed the organ of Corti, in mammalian cochlea. By introducing a supercontinuum (SC) light source and reducing the total acquisition time, we improve the axial resolution and overcome the difficulty in recording the low reflective material in the presence of biological noise. The high power of the SC source enables the system to achieve a spatial resolution of 1.72 ± 0.00 μm on a mirror and reducing the total acquisition time contributes to the high spatial accuracy of sub-nanoscale vibrometry. Our findings reveal the vibrations at the apical/basal region of OHCs and the extracellular matrix, basilar membrane.


Author(s):  
Hui Wang ◽  
Hanbo Zhao ◽  
Yujia Chu ◽  
Jiang Feng ◽  
Keping Sun

Abstract High-frequency hearing is particularly important for echolocating bats and toothed whales. Previously, studies of the hearing-related genes Prestin, KCNQ4, and TMC1 documented that adaptive evolution of high-frequency hearing has taken place in echolocating bats and toothed whales. In this study, we present two additional candidate hearing-related genes, Shh and SK2, that may also have contributed to the evolution of echolocation in mammals. Shh is a member of the vertebrate Hedgehog gene family and is required in the specification of the mammalian cochlea. SK2 is expressed in both inner and outer hair cells, and it plays an important role in the auditory system. The coding region sequences of Shh and SK2 were obtained from a wide range of mammals with and without echolocating ability. The topologies of phylogenetic trees constructed using Shh and SK2 were different; however, multiple molecular evolutionary analyses showed that those two genes experienced different selective pressures in echolocating bats and toothed whales compared to non-echolocating mammals. In addition, several nominally significant positively selected sites were detected in the non-functional domain of the SK2 gene, indicating that different selective pressures were acting on different parts of the SK2 gene. This study has expanded our knowledge of the adaptive evolution of high-frequency hearing in echolocating mammals.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Haim Sohmer

The three modes of auditory stimulation (air, bone and soft tissue conduction) at threshold intensities are thought to share a common excitation mechanism: the stimuli induce passive displacements of the basilar membrane propagating from the base to the apex (slow mechanical traveling wave), which activate the outer hair cells, producing active displacements, which sum with the passive displacements. However, theoretical analyses and modeling of cochlear mechanics provide indications that the slow mechanical basilar membrane traveling wave may not be able to excite the cochlea at threshold intensities with the frequency discrimination observed. These analyses are complemented by several independent lines of research results supporting the notion that cochlear excitation at threshold may not involve a passive traveling wave, and the fast cochlear fluid pressures may directly activate the outer hair cells: opening of the sealed inner ear in patients undergoing cochlear implantation is not accompanied by threshold elevations to low frequency stimulation which would be expected to result from opening the cochlea, reducing cochlear impedance, altering hydrodynamics. The magnitude of the passive displacements at threshold is negligible. Isolated outer hair cells in fluid display tuned mechanical motility to fluid pressures which likely act on stretch sensitive ion channels in the walls of the cells. Vibrations delivered to soft tissue body sites elicit hearing. Thus, based on theoretical and experimental evidence, the common mechanism eliciting hearing during threshold stimulation by air, bone and soft tissue conduction may involve the fast-cochlear fluid pressures which directly activate the outer hair cells.


Sign in / Sign up

Export Citation Format

Share Document