scholarly journals Nav1.7 Mutant A863P in Erythromelalgia: Effects of Altered Activation and Steady-State Inactivation on Excitability of Nociceptive Dorsal Root Ganglion Neurons

2006 ◽  
Vol 26 (48) ◽  
pp. 12566-12575 ◽  
Author(s):  
T. P. Harty ◽  
S. D. Dib-Hajj ◽  
L. Tyrrell ◽  
R. Blackman ◽  
F. M. Hisama ◽  
...  
2000 ◽  
Vol 92 (2) ◽  
pp. 529-529 ◽  
Author(s):  
Lingamaneni Ratnakumari ◽  
Tatyana N. Vysotskaya ◽  
Daniel S. Duch ◽  
Hugh C. Hemmings

Background Despite their key role in the generation and propagation of action potentials in excitable cells, voltage-gated sodium (Na+) channels have been considered to be insensitive to general anesthetics. The authors tested the sensitivity of neuronal Na+ channels to structurally similar anesthetic (1-chloro-1,2,2-trifluorocyclobutane; F3) and nonanesthetic (1,2-dichlorohexafluorocyclobutane; F6) polyhalogenated cyclobutanes by neurochemical and electrophysiologic methods. Methods Synaptosomes (pinched-off nerve terminals) from adult rat cerebral cortex were used to determine the effects of F3 and F6 on 4-aminopyridine- or veratridine-evoked (Na+ channel-dependent) glutamate release (using an enzyme-coupled spectrofluorimetric assay) and increases in intracellular Ca2+ ([Ca2+]i) (using ion-specific spectrofluorimetry). Effects of F3 and F6 on Na+ currents were evaluated directly in rat lumbar dorsal root ganglion neurons by whole-cell patch-clamp recording. Results F3 inhibited glutamate release evoked by 4-aminopyridine (inhibitory concentration of 50% [IC50] = 0.77 mM [approximately 0.8 minimum alveolar concentration (MAC)] or veratridine (IC50 = 0.42 mM [approximately 0.4 MAC]), and veratridine-evoked increases in [Ca2+]i (IC50 = 0.5 mM [approximately 0.5 MAC]) in synaptosomes; F6 had no significant effects up to 0.05 mM (approximately twice the predicted MAC). F3 caused reversible membrane potential-independent inhibition of peak Na+ currents (70+/-9% block at 0.6 mM [approximately 0.6 MAC]), and a hyperpolarizing shift in the voltage-dependence of steady state inactivation in dorsal root ganglion neurons (-21+/-9.3 mV at 0.6 mM). F6 inhibited peak Na+ currents to a lesser extent (16+/-2% block at 0.018 mM [predicted MAC]) and had minimal effects on steady state inactivation. Conclusions The anesthetic cyclobutane F3 significantly inhibited Na+ channel-mediated glutamate release and increases in [Ca2+]i. In contrast, the nonanesthetic cyclobutane F6 had no significant effects at predicted anesthetic concentrations. F3 inhibited dorsal root ganglion neuron Na+ channels with a potency and by mechanisms similar to those of conventional volatile anesthetics; F6 was less effective and did not produce voltage-dependent block. This concordance between anesthetic activity and Na+ channel inhibition supports a role for presynaptic Na+ channels as targets for general anesthetic effects and suggests that shifting the voltage-dependence of Na+ channel inactivation is an important property of volatile anesthetic compounds.


2020 ◽  
Vol 18 (10) ◽  
pp. 791-797
Author(s):  
Qiong Xiang ◽  
Jing-Jing Li ◽  
Chun-Yan Li ◽  
Rong-Bo Tian ◽  
Xian-Hui Li

Background: Our previous study has indicated that somatostatin potently inhibits neuropathic pain through the activation of its type 2 receptor (SSTR2) in mouse dorsal root ganglion and spinal cord. However, the underlying mechanism of this activation has not been elucidated clearly Objective: The aim of this study is to perform the pharmacological studies on the basis of sciatic nerve-pinch mice model and explore the underlying mechanism involving SSTR2. Methods: On the basis of a sciatic nerve-pinch injury model, we aimed at comparing the painful behavior and dorsal root ganglion neurons neurochemical changes after the SSTR2 antibody (anti- SSTR2;5μl,1μg/ml) administration in the mouse. Results: After pinch nerve injury, we found that the mechanical hyperalgesia and severely painful behavior (autotomy) were detected after the application of SSTR2 antibody (anti-SSTR2; 5μl, 1μg/ml) on the pinch-injured nerve. The up-regulated phosphorylated ERK (p-ERK) expression and the apoptotic marker (i.e., Bax) were significantly decreased in DRGs after anti-SSTR2 treatment. Conclusion: The current data suggested that inhibitory changes in proteins from the apoptotic pathway in anti-SSTR2-treated groups might be taking place to overcome the protein deficits caused by SSTR2 antibody and supported the new therapeutic intervention with SSTR2 antagonist for neuronal degeneration following nerve injury.


Sign in / Sign up

Export Citation Format

Share Document