mouse dorsal root ganglion
Recently Published Documents


TOTAL DOCUMENTS

145
(FIVE YEARS 27)

H-INDEX

27
(FIVE YEARS 1)

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Vinicius M. Gadotti ◽  
Sun Huang ◽  
Gerald W. Zamponi

AbstractT-type calcium channels are known molecular targets of certain phytocannabinoids and endocannabinoids. Here we explored the modulation of Cav3.2 T-type calcium channels by terpenes derived from cannabis plants. A screen of eight commercially available terpenes revealed that camphene and alpha-bisabolol mediated partial, but significant inhibition of Cav3.2 channels expressed in tsA-201 cells, as well as native T-type channels in mouse dorsal root ganglion neurons. Both compounds inhibited peak current amplitude with IC50s in the low micromolar range, and mediated an additional small hyperpolarizing shift in half-inactivation voltage. When delivered intrathecally, both terpenes inhibited nocifensive responses in mice that had received an intraplantar injection of formalin, with alpha-bisabolol showing greater efficacy. Both terpenes reduced thermal hyperalgesia in mice injected with Complete Freund’s adjuvant. This effect was independent of sex, and absent in Cav3.2 null mice, indicating that these compounds mediate their analgesic properties by acting on Cav3.2 channels. Both compounds also inhibited mechanical hypersensitivity in a mouse model of neuropathic pain. Hence, camphene and alpha-bisabolol have a wide spectrum of analgesic action by virtue of inhibiting Cav3.2 T-type calcium channels.


2021 ◽  
Author(s):  
Helen E Foster ◽  
Camilla Ventura Santos ◽  
Andrew P Carter

The microtubule cytoskeleton in axons plays key roles in intracellular transport and in defining cell shape. Despite many years of study of microtubules, many questions regarding their native architecture remain unanswered. Here, we performed cryo-electron tomography of mouse dorsal root ganglion (DRG) and Drosophila melanogaster (Dm) neurons and examined their microtubule ultrastructure in situ. We found that the microtubule minus and plus ends in DRG axons are structurally similar and frequently contact nearby components. The microtubules in DRG axons maintained a 13 protofilament (pf) architecture, even close to lattice break sites. In contrast, microtubules in Dm neurons had 12 or 13 pfs and we detected sites of pf number transition. The microtubule lumen in DRG axons is filled with globular microtubule inner proteins (MIPs). Our data suggest these have a defined structure, which is surprising given they are thought to contain the disordered protein MAP6. In summary, we reveal novel morphological and structural features of microtubules in their native environment.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Man-Xiu Xie ◽  
Xian-Ying Cao ◽  
Wei-An Zeng ◽  
Ren-Chun Lai ◽  
Lan Guo ◽  
...  

AbstractEffective treatments for patients suffering from heat hypersensitivity are lacking, mostly due to our limited understanding of the pathogenic mechanisms underlying this disorder. In the nervous system, activating transcription factor 4 (ATF4) is involved in the regulation of synaptic plasticity and memory formation. Here, we show that ATF4 plays an important role in heat nociception. Indeed, loss of ATF4 in mouse dorsal root ganglion (DRG) neurons selectively impairs heat sensitivity. Mechanistically, we show that ATF4 interacts with transient receptor potential cation channel subfamily M member-3 (TRPM3) and mediates the membrane trafficking of TRPM3 in DRG neurons in response to heat. Loss of ATF4 also significantly decreases the current and KIF17-mediated trafficking of TRPM3, suggesting that the KIF17/ATF4/TRPM3 complex is required for the neuronal response to heat stimuli. Our findings unveil the non-transcriptional role of ATF4 in the response to heat stimuli in DRG neurons.


2020 ◽  
Author(s):  
Cunjin Wang ◽  
Yuchen Pan ◽  
Wenwen Zhang ◽  
Ying Chen ◽  
Chuhan Li ◽  
...  

Background The transcriptional repressor positive regulatory domain I–binding factor 1 (PRDM1) is expressed in adult mouse dorsal root ganglion and regulates the formation and function of peripheral sensory neurons. The authors hypothesized that PRDM1 in the dorsal root ganglion may contribute to peripheral nerve injury–induced nociception regulation and that its mechanism may involve Kv4.3 channel transcriptional repression. Methods Nociception was induced in C57BL/6 mice by applying chronic constriction injury, complete Freund’s adjuvant, or capsaicin plantar injection. Nociceptive response was evaluated by mechanical allodynia, thermal hyperalgesia, cold hyperalgesia, or gait analysis. The role of PRDM1 was evaluated by injection of Prdm1 knockdown and overexpression adeno-associated viruses. The interaction of PRDM1 at the Kv4.3 (Kcnd3) promoter was evaluated by chromatin immunoprecipitation assay. Excitability of dorsal root ganglion neurons was evaluated by whole cell patch clamp recordings, and calcium signaling in spinal dorsal horn neurons was evaluated by in vivo two-photon imaging. Results Peripheral nerve injury increased PRDM1 expression in the dorsal root ganglion, which reduced the activity of the Kv4.3 promoter and repressed Kv4.3 channel expression (injured vs. uninjured; all P < 0.001). Knockdown of PRDM1 rescued Kv4.3 expression, reduced the high excitability of injured dorsal root ganglion neurons, and alleviated peripheral nerve injury–induced nociception (short hairpin RNA vs. Scram; all P < 0.05). In contrast, PRDM1 overexpression in naive mouse dorsal root ganglion neurons diminished Kv4.3 channel expression and induced hyperalgesia (PRDM1 overexpression vs. control, mean ± SD; n = 13; all P < 0.0001) as evaluated by mechanical allodynia (0.6 ± 0.3 vs. 1.2 ± 0.2 g), thermal hyperalgesia (5.2 ± 1.3 vs. 9.8 ± 1.7 s), and cold hyperalgesia (3.4 ± 0.5 vs. 5.3 ± 0.6 s). Finally, PRDM1 downregulation in naive mice reduced the calcium signaling response of spinal dorsal horn neurons to thermal stimulation. Conclusions PRDM1 contributes to peripheral nerve injury–induced nociception by repressing Kv4.3 channel expression in injured dorsal root ganglion neurons. Editor’s Perspective What We Already Know about This Topic What This Article Tells Us That Is New


Sign in / Sign up

Export Citation Format

Share Document