scholarly journals Large-Scale Meta-Analysis of Human Medial Frontal Cortex Reveals Tripartite Functional Organization

2016 ◽  
Vol 36 (24) ◽  
pp. 6553-6562 ◽  
Author(s):  
Alejandro de la Vega ◽  
Luke J. Chang ◽  
Marie T. Banich ◽  
Tor D. Wager ◽  
Tal Yarkoni
2020 ◽  
Vol 117 (35) ◽  
pp. 21681-21689 ◽  
Author(s):  
David J. Schaeffer ◽  
Yuki Hori ◽  
Kyle M. Gilbert ◽  
Joseph S. Gati ◽  
Ravi S. Menon ◽  
...  

With the medial frontal cortex (MFC) centrally implicated in several major neuropsychiatric disorders, it is critical to understand the extent to which MFC organization is comparable between humans and animals commonly used in preclinical research (namely rodents and nonhuman primates). Although the cytoarchitectonic structure of the rodent MFC has mostly been conserved in humans, it is a long-standing question whether the structural analogies translate to functional analogies. Here, we probed this question using ultra high field fMRI data to compare rat, marmoset, and human MFC functional connectivity. First, we applied hierarchical clustering to intrinsically define the functional boundaries of the MFC in all three species, independent of cytoarchitectonic definitions. Then, we mapped the functional connectivity “fingerprints” of these regions with a number of different brain areas. Because rats do not share cytoarchitectonically defined regions of the lateral frontal cortex (LFC) with primates, the fingerprinting method also afforded the unique ability to compare the rat MFC and marmoset LFC, which have often been suggested to be functional analogs. The results demonstrated remarkably similar intrinsic functional organization of the MFC across the species, but clear differences between rodent and primate MFC whole-brain connectivity. Rat MFC patterns of connectivity showed greatest similarity with premotor regions in the marmoset, rather than dorsolateral prefrontal regions, which are often suggested to be functionally comparable. These results corroborate the viability of the marmoset as a preclinical model of human MFC dysfunction, and suggest divergence of functional connectivity between rats and primates in both the MFC and LFC.


2007 ◽  
Vol 17 (2) ◽  
pp. 220-227 ◽  
Author(s):  
Matthew FS Rushworth ◽  
Mark J Buckley ◽  
Timothy EJ Behrens ◽  
Mark E Walton ◽  
David M Bannerman

2016 ◽  
Author(s):  
Alejandro de la Vega ◽  
Tal Yarkoni ◽  
Tor D. Wager ◽  
Marie T. Banich

AbstractExtensive fMRI study of human lateral frontal cortex (LFC) has yet to yield a consensus mapping between discrete anatomy and psychological states, partly due to the difficulty of inferring mental states in individual studies. Here, we used a data-driven approach to generate a comprehensive functional-anatomical mapping of LFC from 11,406 neuroimaging studies. We identified putatively separable LFC regions on the basis of whole-brain co-activation, revealing 14 clusters organized into three whole-brain networks. Next, we used multivariate classification to identify the psychological states that best predicted activity in each sub-region, resulting in preferential psychological profiles. We observed large functional differences between networks, suggesting brain networks support distinct modes of processing. Within each network, however, we observed low functional specificity, suggesting discrete psychological states are not modularly organized. Our results are consistent with the view that individual LFC regions work as part of highly parallel, distributed networks to give rise to flexible, adaptive behavior.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Shaoming Wang ◽  
Lindsey J. Tepfer ◽  
Adrienne A. Taren ◽  
David V. Smith

Abstract The default mode network (DMN) consists of several regions that selectively interact to support distinct domains of cognition. Of the various sites that partake in DMN function, the posterior cingulate cortex (PCC), temporal parietal junction (TPJ), and medial prefrontal cortex (MPFC) are frequently identified as key contributors. Yet, it remains unclear whether these subcomponents of the DMN make unique contributions to specific cognitive processes and health conditions. To address this issue, we applied a meta-analytic parcellation approach used in prior work. This approach used the Neurosynth database and classification methods to quantify the association between PCC, TPJ, and MPFC activation and specific topics related to cognition and health (e.g., decision making and smoking). Our analyses replicated prior observations that the PCC, TPJ, and MPFC collectively support multiple cognitive functions such as decision making, memory, and awareness. To gain insight into the functional organization of each region, we parceled each region based on its coactivation pattern with the rest of the brain. This analysis indicated that each region could be further subdivided into functionally distinct subcomponents. Taken together, we further delineate DMN function by demonstrating the relative strengths of association among subcomponents across a range of cognitive processes and health conditions. A continued attentiveness to the specialization within the DMN allows future work to consider the nuances in sub-regional contributions necessary for healthy cognition, as well as create the potential for more targeted treatment protocols in various health conditions.


2014 ◽  
Vol 8 ◽  
Author(s):  
Einat Liebenthal ◽  
Rutvik H. Desai ◽  
Colin Humphries ◽  
Merav Sabri ◽  
Anjali Desai

2017 ◽  
Vol 28 (10) ◽  
pp. 3414-3428 ◽  
Author(s):  
Alejandro de la Vega ◽  
Tal Yarkoni ◽  
Tor D Wager ◽  
Marie T Banich

2017 ◽  
Author(s):  
Shaoming Wang ◽  
Lindsey J. Tepfer ◽  
Adrienne A. Taren ◽  
David V. Smith

AbstractThe default mode network (DMN) consists of several regions that selectively interact to support distinct domains of cognition. Of the various sites that partake in DMN function, the posterior cingulate cortex (PCC), temporal parietal junction (TPJ), and medial prefrontal cortex (MPFC) are frequently identified as key contributors. Yet, it remains unclear whether these subcomponents of the DMN make unique contributions to specific cognitive processes and health conditions. To address this issue, we applied a meta-analytic parcellation approach used in prior work. This approach used the Neurosynth database and classification methods to quantify the association between PCC, TPJ, and MPFC activation and specific topics related to cognition and health (e.g., decision making and smoking). Our analyses replicated prior observations that the PCC, TPJ, and MPFC collectively support multiple cognitive functions such as decision making, memory, and awareness. To gain insight into the functional organization of each region, we parceled each region based on its coactivation pattern with the rest of the brain. This analysis indicated that each region could be further subdivided into functionally distinct subcomponents. Taken together, we further delineate DMN function by demonstrating the relative strengths of association among subcomponents across a range of cognitive processes and health conditions. A continued attentiveness to the specialization within the DMN allows future work to consider the nuances in sub-regional contributions necessary for healthy cognition, as well as create the potential for more targeted treatment protocols in various health conditions.


2016 ◽  
Vol 113 (21) ◽  
pp. 6059-6064 ◽  
Author(s):  
Dobromir Rahnev ◽  
Derek Evan Nee ◽  
Justin Riddle ◽  
Alina Sue Larson ◽  
Mark D’Esposito

Although recent research has shown that the frontal cortex has a critical role in perceptual decision making, an overarching theory of frontal functional organization for perception has yet to emerge. Perceptual decision making is temporally organized such that it requires the processes of selection, criterion setting, and evaluation. We hypothesized that exploring this temporal structure would reveal a large-scale frontal organization for perception. A causal intervention with transcranial magnetic stimulation revealed clear specialization along the rostrocaudal axis such that the control of successive stages of perceptual decision making was selectively affected by perturbation of successively rostral areas. Simulations with a dynamic model of decision making suggested distinct computational contributions of each region. Finally, the emergent frontal gradient was further corroborated by functional MRI. These causal results provide an organizational principle for the role of frontal cortex in the control of perceptual decision making and suggest specific mechanistic contributions for its different subregions.


Sign in / Sign up

Export Citation Format

Share Document