scholarly journals Special functions and the Mellin transforms of Laguerre and Hermite functions

Analysis ◽  
2007 ◽  
Vol 27 (1) ◽  
Author(s):  
Mark W. Coffey

We present explicit expressions for the Mellin transforms of Laguerre and Hermite functions in terms of a variety of special functions. We show that many of the properties of the resulting functions, including functional equations and reciprocity laws, are direct consequences of transformation formulae of hypergeometric functions. Interest in these results is reinforced by the fact that polynomial or other factors of the Mellin transforms have zeros only on the critical line Re

Author(s):  
Gauhar Rahman ◽  
Kottakkaran Sooppy Nisar ◽  
Muhammad Arshad

The main objective of this present paper is to introduce further extension of extended Caputo fractional derivative operator and establish the extension of an extended fractional derivative of some known elementary functions. Also, we investigate the extended fractional derivative of some familiar special functions, the Mellin transforms of newly defined Caputo fractional derivative operator and generating relations for extension of extended hypergeometric functions.


Author(s):  
Gauhar Rahman ◽  
Kottakkaran Sooppy Nisar ◽  
Shahid Mubeen

Recently, different extensions of the fractional derivative operator are found in many research papers. The main aim of this paper is to establish an extension of the extended Caputo fractional derivative operator. The extension of an extended fractional derivative of some elementary functions derives by considering an extension of beta function which includes the Mittag-Leffler function in the kernel. Further, an extended fractional derivative of some familiar special functions, the Mellin transforms of newly defined Caputo fractional derivative operator and the generating relations for extension of extended hypergeometric functions also presented in this study.


Symmetry ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2238
Author(s):  
Rahul Goyal ◽  
Praveen Agarwal ◽  
Alexandra Parmentier ◽  
Clemente Cesarano

The main aim of this work is to study an extension of the Caputo fractional derivative operator by use of the two-parameter Mittag–Leffler function given by Wiman. We have studied some generating relations, Mellin transforms and other relationships with extended hypergeometric functions in order to derive this extended operator. Due to symmetry in the family of special functions, it is easy to study their various properties with the extended fractional derivative operators.


2021 ◽  
Vol 6 (11) ◽  
pp. 11631-11641
Author(s):  
Syed Ali Haider Shah ◽  
◽  
Shahid Mubeen

<abstract><p>In this paper, we investigate the relation of generalized Meijer $ G $-functions with some other special functions. We prove the generalized form of Laguerre polynomials, product of Laguerre polynomials with exponential functions, logarithmic functions in terms of generalized Meijer $ G $-functions. The generalized confluent hypergeometric functions and generalized tricomi confluent hypergeometric functions are also expressed in terms of the generalized Meijer $ G $-functions.</p></abstract>


Mathematics ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 407 ◽  
Author(s):  
N.-L. Wang ◽  
Praveen Agarwal ◽  
S. Kanemitsu

Boundary behavior of a given important function or its limit values are essential in the whole spectrum of mathematics and science. We consider some tractable cases of limit values in which either a difference of two ingredients or a difference equation is used coupled with the relevant functional equations to give rise to unexpected results. As main results, this involves the expression for the Laurent coefficients including the residue, the Kronecker limit formulas and higher order coefficients as well as the difference formed to cancel the inaccessible part, typically the Clausen functions. We establish these by the relation between bases of the Kubert space of functions. Then these expressions are equated with other expressions in terms of special functions introduced by some difference equations, giving rise to analogues of the Lerch-Chowla-Selberg formula. We also state Abelian results which not only yield asymptotic formulas for weighted summatory function from that for the original summatory function but assures the existence of the limit expression for Laurent coefficients.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
N. J. Hassan ◽  
A. Hawad Nasar ◽  
J. Mahdi Hadad

In this paper, we derive the cumulative distribution functions (CDF) and probability density functions (PDF) of the ratio and product of two independent Weibull and Lindley random variables. The moment generating functions (MGF) and the k-moment are driven from the ratio and product cases. In these derivations, we use some special functions, for instance, generalized hypergeometric functions, confluent hypergeometric functions, and the parabolic cylinder functions. Finally, we draw the PDF and CDF in many values of the parameters.


Author(s):  
Even Mehlum ◽  
Jet Wimp

AbstractWe show that the position vector of any 3-space curve lying on a sphere satisfies a third-order linear (vector) differential equation whose coefficients involve a single arbitrary function A(s). By making various identifications of A(s), we are led to nonlinear identities for a number of higher transcendental functions: Bessel functions, Horn functions, generalized hypergeometric functions, etc. These can be considered natural geometrical generalizations of sin2t + cos2t = 1. We conclude with some applications to the theory of splines.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Junesang Choi ◽  
Praveen Agarwal

A remarkably large number of integral transforms and fractional integral formulas involving various special functions have been investigated by many authors. Very recently, Agarwal gave some integral transforms and fractional integral formulas involving theFp(α,β)(·). In this sequel, using the same technique, we establish certain integral transforms and fractional integral formulas for the generalized Gauss hypergeometric functionsFp(α,β,m)(·). Some interesting special cases of our main results are also considered.


Author(s):  
Anatoly Kilbas ◽  
Anna Koroleva ◽  
Sergei Rogosin

AbstractThis paper surveys one of the last contributions by the late Professor Anatoly Kilbas (1948–2010) and research made under his advisorship. We briefly describe the historical development of the theory of the discussed multi-parametric Mittag-Leffler functions as a class of the Wright generalized hypergeometric functions. The method of the Mellin-Barnes integral representations allows us to extend the considered functions to the case of arbitrary values of parameters. Thus, the extended Mittag-Leffler-type functions appear. The properties of these special functions and their relations to the fractional calculus are considered. Our results are based mainly on the properties of the Fox H-functions, as one of the widest class of special functions.


Sign in / Sign up

Export Citation Format

Share Document