Scanning phononic lattices with surface acoustic waves

Author(s):  
Robert E. Vines ◽  
James P. Wolfe

AbstractWe have examined the propagation of surface acoustic waves across structures with periodically varying elastic properties. These so-called phononic lattices include a) alternating layers of aluminum and polymer in a multilayer structure, b) a 2-d hexagonal lattice of holes drilled in an aluminum substrate and filled with polymer, and c) a 2-d hexagonal array of Al posts surrounded by polymer. A simple method is employed for probing the elastic properties of these periodic structures with ultrasound in the 0.5–5 MHz range. Ultrasonic surface waves are introduced and detected by water-immersion transducers, cylindrically focused to a line on the sample surface. Transmission and reflection patterns are observed by continuously scanning the wavevector angle with respect to the symmetry axes of the lattice. By Fourier transforming the transmitted signals using a broadband source, we obtain the frequency responses of the lattices as a function of propagation angle. Phononic band gaps, waveguide channeling and Scholte-like interface modes are observed. The results are compared to models of the propagation of transverse waves through analogous bulk structures, for which theories are available. These preliminary models explain the basic features of the experimental results, such as frequency gaps and wave channeling. A number of observations, however, remain to be explained. The angle-scanning technique provides a powerful probe of these modulated structures.

1994 ◽  
Vol 59 (1) ◽  
pp. 83-86 ◽  
Author(s):  
H. Coufal ◽  
K. Meyer ◽  
R. K. Grygier ◽  
M. Vries ◽  
D. Jenrich ◽  
...  

2012 ◽  
Vol 210 (3) ◽  
pp. 513-518 ◽  
Author(s):  
E. Salas ◽  
F. Jiménez-Villacorta ◽  
J. Sánchez-Marcos ◽  
R. J. Jiménez Riobóo ◽  
A. Muñoz-Martín ◽  
...  

Author(s):  
Saeed Mohammadi ◽  
Abdelkrim Khelif ◽  
Ryan Westafer ◽  
Eric Massey ◽  
William D. Hunt ◽  
...  

Periodic elastic structures, called phononic crystals, show interesting frequency domain characteristics that can greatly influence the performance of acoustic and ultrasonic devices for several applications. Phononic crystals are acoustic counterparts of the extensively-investigated photonic crystals that are made by varying material properties periodically. Here we demonstrate the existence of phononic band-gaps for surface acoustic waves (SAWs) in a half-space of two dimensional phononic crystals consisting of hexagonal (honeycomb) arrangement of air cylinders in a crystalline Silicon background with low filling fraction. A theoretical calculation of band structure for bulk wave using finite element method is also achieved and shows that there is no complete phononic band gap in the case of the low filling fraction. Fabrication of the holes in Silicon is done by optical lithography and deep Silicon dry etching. In the experimental characterization, we have used slanted finger interdigitated transducers deposited on a thin layer of Zinc oxide (sputtered on top of the phononic crystal structure to excite elastic surface waves in Silicon) to cover a wide range of frequencies. We believe this to be the first reported demonstration of phononic band-gap for SAWs in a hexagonal lattice phononic crystal at such a high frequency.


Sign in / Sign up

Export Citation Format

Share Document