Superprotonic high temperature phase and refinement of the low temperature structure of CsHSeO4

Author(s):  
M. A. Zakharov ◽  
Sergej I. Troyanov ◽  
Erhard Kemnitz

AbstractThe crystal structure of the high temperature superprotonic phase of CsHSeO

1998 ◽  
Vol 547 ◽  
Author(s):  
Sossina M. Haile

AbstractFrom an investigation of the structures and electrical properties of compounds in the CsHSO4 - CsH2PO4 system, a simple model is presented for predicting whether or not a solid acid will undergo a structural transition to a disordered, superprotonic phase. Such a transition was measured in ß-Cs3(HSO4)2(H2-x(SxP1-x)O4), α-Cs3(HSO4)2(H2PO4) and Cs2(HSO4)(H2PO4), but not CsH2PO4. It is proposed that entropy drives any solid acid to a high-temperature structure in which the oxygen atoms participate equally in forming hydrogen bonds. If the H:XO4 ratio is not precisely 2:1, such chemical equivalence of oxygen atoms can only be achieved if the structure transforms to a state in which proton occupancies at hydrogen bonds are less than one and/or oxygen site occupancies are less than one. This disorder simultaneously leads to fast proton transport in the high-temperature phase, and thus superprotonic conductivity.


Author(s):  
Bi-Qin Wang ◽  
Hai-Biao Yan ◽  
Zheng-Qing Huang ◽  
Zhi Zhang

A new metal–formate framework, poly[1H-imidazol-3-ium [tri-μ2-formato-manganese(II)]], {(C3H5N2)[Mn(HCOO)3]}n, was synthesized and its structural phase transition was studied by thermal analysis and variable-temperature X-ray diffraction analysis. The transition temperature is around 435 K. The high-temperature phase is tetragonal and the low-temperature phase is monoclinic, with a β angle close to 90°. The relationship of the unit cells between the two phases can be described as:aHT= 0.5aLT+ 0.5bLT;bHT= −0.5aLT+ 0.5bLT;cHT = 0.5cLT. In the high-temperature phase, both the framework and the guest 1H-imidazol-3-ium (HIm) cations are disordered; the HIm cations are located about 2mmsites and were modelled as fourfold disordered. The Mn and a formate C atom are located on fourfold rotary inversion axes, while another formate C atom is on a mirror plane. The low-temperature structure is ordered and consists of two crystallographically independent HIm cations and two crystallographically independent Mn2+ions. The phase transition is attributable to the order–disorder transition of the HIm cations.


1994 ◽  
Vol 49 (1-2) ◽  
pp. 193-198 ◽  
Author(s):  
Sundara Ramaprabhu ◽  
Edwin A. C. Lucken ◽  
Gérald Bernardinelli

Abstract The crystal structure and 63Cu NQR spectra of two neutral hexanuclear Cu(I) complexes of 4,6-dimethylpyrimidine-2-thione, (Hdmpt); [dmptCu]66CHCl3 (l) and [dmptCu]6C2H4Cl2 (2), are reported. The number and relative intensities of the NQR resonances are in agreement with the results of the crystallographic study. The temperature-dependence of the resonances reveals that both compounds undergo a phase-change in the temperature range 77 K -300 K, both of which may be associated with the loss of a symmetry-element present in the high-temperature phase. The 35Cl resonances of CHCl3 in 1 could be observed in the low-temperature phase but the corresponding resonances for C2H4Cl2 in 2 were not detected.


2012 ◽  
Vol 2012 ◽  
pp. 1-5 ◽  
Author(s):  
Yuki Maruyama ◽  
Chihiro Izawa ◽  
Tomoaki Watanabe

has been successfully synthesized using Bi2O3–B2O3 eutectic flux. In particular, we succeeded in synthesizing a low-temperature-phase crystal (α-) at 1073 K as well as high-temperature-phase crystal (β-). The morphology of α- and β- particles prepared by the flux method is a euhedral crystal. In contrast, the morphology of particles prepared by solid state reaction differs: α- is aggregated and β- is necked. Ultraviolet-visible diffuse reflectance spectra indicate that the absorption edge is at a longer wavelength for β- than for α- with β- absorbing light of wavelengths up to nearly 400 nm.


1981 ◽  
Vol 36 (9) ◽  
pp. 967-974 ◽  
Author(s):  
Gerhard Fecher ◽  
Alarich Weiss ◽  
Gernot Heger

Abstract The crystal structure of the low temperature phase of anilinium bromide, C6H5NH3⊕Br⊖, was studied by neutron diffraction at T = 100 K. The refinement supports an ordered structure. The structures of the low and high temperature phases are compared and the mechanism of the phase transformation is discussed.


2001 ◽  
Vol 57 (6) ◽  
pp. 791-799 ◽  
Author(s):  
Menahem Kaftory ◽  
Mark Botoshansky ◽  
Moshe Kapon ◽  
Vitaly Shteiman

4,6-Dimethoxy-3-methyldihydrotriazine-2-one (1) undergoes a single-crystal to single-crystal reversible phase transformation at 319 K. The low-temperature phase crystallizes in monoclinic space group P21/n with two crystallographically independent molecules in the asymmetric unit. The high-temperature phase is obtained by heating a single crystal of the low-temperature phase. This phase is orthorhombic, space group Pnma, with the molecules occupying a crystallographic mirror plane. The enthalpy of the transformation is 1.34 kJ mol−1. The small energy difference between the two phases and the minimal atomic movement facilitate the single-crystal to single-crystal reversible phase transformation with no destruction of the crystal lattice. On further heating, the high-temperature phase undergoes methyl rearrangement in the solid state. 2,4,6-Trimethoxy-1,3,5-triazine (3), on the other hand, undergoes an irreversible phase transformation from single-crystal to polycrystalline material at 340 K with an enthalpy of 3.9 kJ mol−1; upon further heating it melts and methyl rearrangement takes place.


Sign in / Sign up

Export Citation Format

Share Document