scholarly journals Elevated CO2 Concentration Alleviates the Adverse Effects of Drought Stress by Modifying Stomatal Traits of Green Pepper (Capsicum annuum L.)

Author(s):  
Na Liu ◽  
Xiaodong Fan ◽  
Xu Cao ◽  
Yunxin Zhang ◽  
Yinshuai Tian ◽  
...  
2003 ◽  
Vol 60 (2) ◽  
pp. 231-238 ◽  
Author(s):  
Walter de Paula Lima ◽  
Paul Jarvis ◽  
Sophia Rhizopoulou

Five species of Eucalyptus (E. grandis, E. urophylla, E. camaldulensis, E. torelliana, and E. phaeotrica), among the ten species most commonly used in large scale plantations, were selected for studies on the effects of elevated CO2 concentration [CO2] and drought stress on stomatal responses of 2.5-month old seedlings. The first three species belong to the subgenus Smphyomyrtus, whereas the fourth species belongs to the subgenus Corymbia and E. phaeotrica is from the subgenus Monocalyptus. Seedlings were grown in four pairs of open-top chambers, arranged to have 2 plants of each species in each chamber, with four replications in each of two CO2 concentrations: 350 ± 30 mumol mol-1 and 700 ± 30 mumol mol-1. After 100 days in the chambers, a series of gas exchange measurements were made. Half the plants in each chamber, one plant per species per chamber, were drought-stressed by withholding irrigation, while the remaining plants continued to be watered daily. Drought stress decreased stomatal conductance, photosynthesis and transpiration rates in all the species. The effect of drought stress on stomatal closure was similar in both [CO2]. The positive effects of elevated [CO2] on photosynthesis and water use efficiency were maintained longer during the stress period than under well-watered conditions. The photosynthetic rate of E. phaeotrica was higher even in the fourth day of the drought stress. Drought stress increased photoinhibition of photosynthesis, as measured by chlorophyll fluorescence, which varied among the species, as well as in relation to [CO2]. The results are in agreement with observed differences in stomatal responses between some eucalyptus species of the subgenera Symphyomyrtus and Monocalyptus.


2017 ◽  
Vol 44 (6) ◽  
pp. 573 ◽  
Author(s):  
Manuel E. Porras ◽  
Pilar Lorenzo ◽  
Evangelina Medrano ◽  
María J. Sánchez-González ◽  
Ginés Otálora-Alcón ◽  
...  

In many plant species, long-term exposure to elevated CO2 concentration results in a reduction in photosynthetic capacity, known as acclimation. This process is mainly explained by a feedback inhibition mechanism. The supply of a fraction of the nitrogen (N) in the nutrient solution as NH4+ can play an important role in the maintenance of photosynthetic activity and could mitigate the acclimation process. The aims of the present work were to study the photosynthetic response of sweet pepper (Capsicum annuum L.) to CO2 enrichment in Mediterranean greenhouse conditions, throughout the crop growth cycle and to evaluate the supply of NH4+ in the nutrient solution as a strategy to enhance the long-term response to CO2 at different levels of salinity. The experiment was conducted in two identical greenhouses: one with CO2 enrichment according to the ventilation, maintaining a high concentration when the vents were closed and a near-atmospheric level when the vents were open and one without. Sweet pepper plants were grown in both greenhouses, being irrigated with two levels of water salinity and two N sources: (i) NO3– and (ii) NO3– plus NH4+. A reduction in the response of photosynthesis to high CO2 concentration was found in the enriched plants after 135 days of CO2 supply, with respect to the reference plants. The leaf photosynthesis rate measured at high CO2 concentration showed a closer relationship with the leaf N concentration than the non-structural carbohydrate concentration. The relative yield gain of the CO2-enriched plants progressively decreased after reaching a maximum value; this was probably associated with the photosynthetic acclimation process. This decrease was delayed by the use of NH4+ in the nutrient solution at low salinity. Knowledge of the crop phase when acclimation to high CO2 concentration occurs can be the basis for deciding when to impose an early cessation of CO2 application, as a strategy to improve the economic efficiency of CO2 supply in Mediterranean conditions.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Rong Zhou ◽  
Xiaqing Yu ◽  
Junqin Wen ◽  
Nikolaj Bjerring Jensen ◽  
Thayna Mendanha dos Santos ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document