fruit development and ripening
Recently Published Documents


TOTAL DOCUMENTS

204
(FIVE YEARS 21)

H-INDEX

34
(FIVE YEARS 0)

2022 ◽  
Vol 295 ◽  
pp. 110898
Author(s):  
Shicong Wang ◽  
Meimiao Guo ◽  
Kexin Huang ◽  
Qiaoyun Qi ◽  
Wenjie Li ◽  
...  


2021 ◽  
Vol 23 (1) ◽  
pp. 243
Author(s):  
Tong Ning ◽  
Chengjie Chen ◽  
Ganjun Yi ◽  
Houbin Chen ◽  
Yudi Liu ◽  
...  

Though numerous studies have focused on the cell wall disassembly of bananas during the ripening process, the modification of homogalacturonan (HG) during fruit development remains exclusive. To better understand the role of HGs in controlling banana fruit growth and ripening, RNA-Seq, qPCR, immunofluorescence labeling, and biochemical methods were employed to reveal their dynamic changes in banana peels during these processes. Most HG-modifying genes in banana peels showed a decline in expression during fruit development. Four polygalacturonase and three pectin acetylesterases showing higher expression levels at later developmental stages than earlier ones might be related to fruit expansion. Six out of the 10 top genes in the Core Enrichment Gene Set were HG degradation genes, and all were upregulated after softening, paralleled to the significant increase in HG degradation enzyme activities, decline in peel firmness, and the epitope levels of 2F4, CCRC-M38, JIM7, and LM18 antibodies. Most differentially expressed alpha-1,4-galacturonosyltransferases were upregulated by ethylene treatment, suggesting active HG biosynthesis during the fruit softening process. The epitope level of the CCRC-M38 antibody was positively correlated to the firmness of banana peel during fruit development and ripening. These results have provided new insights into the role of cell wall HGs in fruit development and ripening.



Author(s):  
Núria Vall-llaura ◽  
Pablo Fernández-Cancelo ◽  
Isabel Nativitas-Lima ◽  
Gemma Echeverria ◽  
Neus Teixidó ◽  
...  


2021 ◽  
Vol 22 (22) ◽  
pp. 12414
Author(s):  
Xiang Li ◽  
Kewei Cai ◽  
Xiaona Pei ◽  
Yan Li ◽  
Yanbo Hu ◽  
...  

The NAC (NAM, ATAF and CUC) gene family plays a crucial role in the transcriptional regulation of various biological processes and has been identified and characterized in multiple plant species. However, genome-wide identification of this gene family has not been implemented in Juglans mandshurica, and specific functions of these genes in the development of fruits remain unknown. In this study, we performed genome-wide identification and functional analysis of the NAC gene family during fruit development and identified a total of 114 JmNAC genes in the J. mandshurica genome. Chromosomal location analysis revealed that JmNAC genes were unevenly distributed in 16 chromosomes; the highest numbers were found in chromosomes 2 and 4. Furthermore, according to the homologues of JmNAC genes in Arabidopsis thaliana, a phylogenetic tree was constructed, and the results demonstrated 114 JmNAC genes, which were divided into eight subgroups. Four JmNAC gene pairs were identified as the result of tandem duplicates. Tissue-specific analysis of JmNAC genes during different developmental stages revealed that 39 and 25 JmNAC genes exhibited upregulation during the mature stage in walnut exocarp and embryos, indicating that they may serve key functions in fruit development. Furthermore, 12 upregulated JmNAC genes were common in fruit ripening stage in walnut exocarp and embryos, which demonstrated that these genes were positively correlated with fruit development in J. mandshurica. This study provides new insights into the regulatory functions of JmNAC genes during fruit development in J. mandshurica, thereby improving the understanding of characteristics and evolution of the JmNAC gene family.



2021 ◽  
Vol 22 (22) ◽  
pp. 12331
Author(s):  
Zefeng Zhai ◽  
Chen Feng ◽  
Yanyan Wang ◽  
Yueting Sun ◽  
Xiang Peng ◽  
...  

Fruit firmness is an important economical trait in sweet cherry (Prunus avium L.) where the change of this trait is related to cell wall degradation. Xyloglucan endotransglycosylase/hydrolase (XTH) and polygalacturonases (PGs) are critical cell-wall-modifying enzymes that occupy a crucial position in fruit ripening and softening. Herein, we identified 18 XTHs and 45 PGs designated PavXTH1-18 and PavPG1-45 based on their locations in the genome of sweet cherry. We provided a systematical overview of PavXTHs and PavPGs, including phylogenetic relationships, conserved motifs, and expression profiling of these genes. The results showed that PavXTH14, PavXTH15 and PavPG38 were most likely to participated in fruit softening owing to the substantial increment in expression during fruit development and ripening. Furthermore, the phytohormone ABA, MeJA, and ethephon significantly elevated the expression of PavPG38 and PavXTH15, and thus promoted fruit softening. Importantly, transient expression PavXTH14, PavXTH15 and PavPG38 in cherry fruits significantly reduced the fruit firmness, and the content of various cell wall components including hemicellulose and pectin significantly changed correspondingly in the transgenic fruit. Taken together, these results present an extensive analysis of XTHs and PGs in sweet cherry and provide potential targets for breeding softening-resistant sweet cherry cultivars via manipulating cell wall-associated genes.



2021 ◽  
Author(s):  
Guoming Wang ◽  
Zhihua Guo ◽  
Xueping Wang ◽  
Hongru Gao ◽  
Kaijie Qi ◽  
...  

Abstract Background: Quantitative real-time PCR (qRT-PCR) is currently one of the most reliable and improved tools for analyzing gene expression. Various studies have shown that housekeeping genes was varied with cultivars, tissues and treatment. The reliable and stable reference genes were necessarily identified and evaluated according to different experimental requirements. Result: In this study, 10 candidate reference genes were initially screened based on the transcriptome sequencing data of four pear fruit development stages of three different pear cultivars, including a candidate housekeeping gene PbrTUB. Furthermore, we ranked the expression stability of 10 candidate reference genes using algorithms GeNorm, NormFinder, BestKeeper and ReFinder. Finally, the result showed that Pbr028511, Pbr038418 and Pbr041114 were the most stable reference gene in Cuiguan, Housui and Xueqing fruit, respectively. Concludion: Thee results provide a valuable resource that serve as significant reference for gene function explorations and molecular mechanism studies in fruit development and ripening of different pear cultivars.



2021 ◽  
Vol 12 ◽  
Author(s):  
Xiaonan Dong ◽  
Chaorui Liu ◽  
Yuqi Wang ◽  
Qing Dong ◽  
Yingping Gai ◽  
...  

To understand the mechanism of small non-coding RNAs (miRNA)-mediated development and ripening of mulberry fruits, three small RNA libraries from mulberry fruits at different development stages were constructed, and 159 conserved miRNAs as well as 86 novel miRNAs were successfully identified. Among the miRNAs identified, there were 90 miRNAs which showed differential expression patterns at different stages of fruit development and ripening. The target genes of these differential expressed (DE) miRNAs were involved in growth and development, transcription and regulation of transcription, metabolic processes, and etc. Interestingly, it was found that the expression level of mul-miR477 was increased with fruit ripening, and it can target the antisense lncRNA (Mul-ABCB19AS) of the ATP binding cassette (ABC) transporter B 19 gene (Mul-ABCB19). Our results showed that mul-miR477 can repress the expression of Mul-ABCB19AS and increase the expression of Mul-ABCB19, and it acted as a positive regulator participating anthocyanin accumulation through the regulatory network of mul-miR477—Mul-ABCB19AS—Mul-ABCB19.



Molecules ◽  
2021 ◽  
Vol 26 (17) ◽  
pp. 5158
Author(s):  
Soyol Dashbaldan ◽  
Agata Rogowska ◽  
Cezary Pączkowski ◽  
Anna Szakiel

Triterpenoids and steroids are considered to be important for the fruit quality and health-promoting properties for the consumers. The aim of the study was the determination of the changes in triterpenoid and steroid biosynthesis and the accumulation in hypanthium and achenes of rugosa rose (Rosa rugosa Thunb.) hip during fruit development and ripening at three different phenological stages (young fruits, fully developed unripe fruits, and matured fruits). Triterpenoids and steroids were also determined in the peel and the pulp of the matured hips. The obtained results indicated that the distribution of the analyzed compounds in different fruit tissues is a selective process. The increased rate of hydroxylation of triterpenoids, the deposition of hydroxylated acids in fruit surface layer, and the continuous biosynthesis of phytosterols in achenes versus its gradual repression in hypanthium accompanied by the accumulation of their biosynthetic intermediates and ketone derivatives seem to be characteristic metabolic features of maturation of rugosa rose accessory fruit. These observations, apart from providing the important data on metabolic modifications occurring in developing fruits, might have a practical application in defining fruit parts, particularly rich in bioactive constituents, to enable the development of novel functional products.



Cells ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 2095
Author(s):  
Angela Mendez-Yañez ◽  
Patricio Ramos ◽  
Luis Morales-Quintana

Approximately thirty percent of the proteins synthesized in animal or plant cells travel through the secretory pathway. Seventy to eighty percent of those proteins are glycosylated. Thus, glycosylation is an important protein modification that is related to many cellular processes, such as differentiation, recognition, development, signal transduction, and immune response. Additionally, glycosylation affects protein folding, solubility, stability, biogenesis, and activity. Specifically, in plants, glycosylation has recently been related to the fruit ripening process. This review aims to provide valuable information and discuss the available literature focused on three principal topics: (I) glycosylations as a key posttranslational modification in development in plants, (II) experimental and bioinformatics tools to analyze glycosylations, and (III) a literature review related to glycosylations in fruit ripening. Based on these three topics, we propose that it is necessary to increase the number of studies related to posttranslational modifications, specifically protein glycosylation because the specific role of glycosylation in the posttranslational process and how this process affects normal fruit development and ripening remain unclear to date.



Sign in / Sign up

Export Citation Format

Share Document