scholarly journals Spatial and seasonal distribution of dissolved and particulate bioactive metals in Antarctic sea ice

Elem Sci Anth ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Luis Duprat ◽  
Ashley T. Townsend ◽  
Pier van der Merwe ◽  
Klaus M. Meiners ◽  
Delphine Lannuzel

Iron (Fe) has been shown to limit growth of marine phytoplankton in the Southern Ocean, regulating phytoplankton productivity and species composition, yet does not seem to limit primary productivity in Antarctic sea ice. Little is known, however, about the potential impact of other metals in controlling sea-ice algae growth. Here, we report on the distribution of dissolved and particulate cadmium (Cd), cobalt (Co), copper (Cu), manganese (Mn), nickel (Ni), and zinc (Zn) concentrations in sea-ice cores collected during 3 Antarctic expeditions off East Antarctica spanning the winter, spring, and summer seasons. Bulk sea ice was generally enriched in particulate metals but dissolved concentrations were similar to the underlying seawater. These results point toward an environment controlled by a subtle balance between thermodynamic and biological processes, where metal availability does not appear to limit sea-ice algal growth. Yet the high concentrations of dissolved Cu and Zn found in our sea-ice samples raise concern about their potential toxicity if unchelated by organic ligands. Finally, the particulate metal-to-phosphorus (P) ratios of Cu, Mn, Ni, and Zn calculated from our pack ice samples are higher than values previously reported for pelagic marine particles. However, these values were all consistently lower than the sea-ice Fe:P ratios calculated from the available literature, indicating a large accumulation of Fe relative to other metals in sea ice. We report for the first time a P-normalized sea-ice particulate metal abundance ranking of Fe >> Zn ≈ Ni ≈ Cu ≈ Mn > Co ≈ Cd. We encourage future sea-ice work to assess cellular metal quotas through existing and new approaches. Such work, together with a better understanding of the nature of ligand complexation to different metals in the sea-ice environment, would improve the evaluation of metal bioavailability, limitation, and potential toxicity to sea-ice algae.

2012 ◽  
Vol 112 (2) ◽  
pp. 103-115 ◽  
Author(s):  
Ian Hawes ◽  
Lars Chresten Lund-Hansen ◽  
Brian K. Sorrell ◽  
Morten Holtegaard Nielsen ◽  
Réka Borzák ◽  
...  

2016 ◽  
Author(s):  
Alexander L. Forrest ◽  
Lars C. Lund-Hansen ◽  
Brian K. Sorrell ◽  
Isak Bowden-Floyd ◽  
Vanessa Lucieer ◽  
...  

Abstract. Identifying spatial heterogeneity of sea ice algae communities is critical to predicting ecosystem response under future climate scenarios. Using an autonomous robotic sampling platform beneath sea ice in McMurdo Sound, Antarctica, we measured irradiance in spectral bands expected to describe the spatial heterogeneity. Derived estimates of ice algae biomass identified patchiness at length scales varying from 50–70 m under first-year sea ice. These results demonstrate that a step-change in how these communities can be assessed and monitored. The developed methodologies could be subsequently refined to further categorize different ice algae communities and their associated productivity in both Arctic and Antarctic waters.


2017 ◽  
Author(s):  
Andrew McMinn

Abstract. Sea ice algae are naturally exposed to a wider range of pH and CO2 concentrations than marine phytoplankton. While climate change and ocean acidification (OA) will impact pelagic communities, their effects on sea ice microbial communities remains unclear. Sea ice contains several distinct microbial communities, which are exposed to differing environmental conditions depending on their depth within the ice. Bottom communities mostly experience relatively benign bulk ocean properties, while interior brine and surface communities experience much greater extremes. Most OA studies have examined the impacts on single sea ice algae species in culture. Although some studies examined the effects of OA alone, most also examined the effects of OA and either light, nutrients or temperature. With few exceptions, increased CO2 concentration caused either no change or an increase in growth and/or photosynthesis. In situ studies of brine and surface algae also demonstrated a wide tolerance to increased and decreased pH and showed increased growth at higher CO2 concentrations. The short time period of most experiments (


Geology ◽  
1999 ◽  
Vol 27 (4) ◽  
pp. 331 ◽  
Author(s):  
John A E. Gibson ◽  
Tom Trull ◽  
Peter D. Nichols ◽  
Roger E. Summons ◽  
Andrew McMinn

2019 ◽  
Vol 7 ◽  
Author(s):  
Alexander L. Forrest ◽  
Lars C. Lund-Hansen ◽  
Brian K. Sorrell ◽  
Isak Bowden-Floyd ◽  
Vanessa Lucieer ◽  
...  

PLoS ONE ◽  
2014 ◽  
Vol 9 (1) ◽  
pp. e86984 ◽  
Author(s):  
Andrew McMinn ◽  
Marius N. Müller ◽  
Andrew Martin ◽  
Ken G. Ryan

2018 ◽  
Vol 37 (1) ◽  
pp. 1438696 ◽  
Author(s):  
Katerina Castrisios ◽  
Andrew Martin ◽  
Marius N. Müller ◽  
Fraser Kennedy ◽  
Andrew McMinn ◽  
...  

PLoS ONE ◽  
2020 ◽  
Vol 15 (4) ◽  
pp. e0231178 ◽  
Author(s):  
Chelsea Wegner Koch ◽  
Lee W. Cooper ◽  
Catherine Lalande ◽  
Thomas A. Brown ◽  
Karen E. Frey ◽  
...  

2001 ◽  
Vol 33 ◽  
pp. 297-303 ◽  
Author(s):  
David N. Thomas ◽  
Gerhard Kattner ◽  
Ralph Engbrodt ◽  
Virginia Giannelli ◽  
Hilary Kennedy ◽  
...  

AbstractIt has been hypothesized that there are significant dissolved organic matter (DOM) pools in sea-ice systems, although measurements of DOM in sea ice have only rarely been made. The significance of DOM for ice-based productivity and carbon turnover therefore remains highly speculative. DOM within sea ice from the Amundsen and Bellingshausen Seas, Antarctica, in 1994 and the Weddell Sea, Antarctica, in 1992 and 1997 was investigated. Measurements were made on melted sea-ice sections in 1994 and 1997 and in sea-ice brines in 1992. Dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) concentrations in melted ice cores were up to 1.8 and 0.78 mM, respectively, or 30 and 8 times higher than those in surface water concentrations, respectively. However, when concentrations within the brine channel/pore space were calculated from estimated brine volumes, actual concentrations of DOC in brines were up to 23.3 mM and DON up to 2.2 mM, although mean values were 1.8 and 0.15 mM, respectively. There were higher concentrations of DOM in warm, porous summer second-year sea ice compared with colder autumn first-year ice, consistent with the different biological activity supported within the various ice types. However, in general there was poor correlation between DOC and DON with algal biomass and numbers of bacteria within the ice. The mean DOC/DON ratio was 11, although again values were highly variable, ranging from 3 to highly carbon-enriched samples of 95. Measurements made on a limited dataset showed that carbohydrates constitute on average 35% of the DOC pool, with highly variable contributions of 1−99%.


Sign in / Sign up

Export Citation Format

Share Document