The influence of luteinizing hormone on the Leydig cells of cryptorchid rat testes

1984 ◽  
Vol 107 (1) ◽  
pp. 110-116 ◽  
Author(s):  
L.J. Wilton ◽  
D. M. de Kretser

Abstract. The influence of circulating LH levels on Leydig cells from cryptorchid adult rats was examined after ablation of the pituitary. After 2 weeks cryptorchidism, serum FSH and LH levels rose 2-fold while serum testosterone (T) remained unchanged. Leydig cells were hypertrophied and showed an increased response to in vitro hCG stimulation. Two weeks after hypophysectomy (hypox), serum hormone levels (LH, FSH and T), Leydig cell size, cytoplasm, organelle content and in vitro T production were all dramatically reduced. However, when hypophysectomy was combined with cryptorchidism (hypox/crypt), there was an increase in Leydig cell size, compared to hypophysectomy alone, in the presence of very low levels of serum FSH, LH and T. Compared to the hypophysectomised state, the mitochondria were larger and the cytoplasm contained more smooth endoplasmic reticulum. The response of the hypox/crypt testes to in vitro hCG stimulation, though significantly less than the cryptorchid testes, was significantly greater than the hypox testes. These results demonstrate that the changes observed in the Leydig cell after cryptorchidism can occur in the absence of peripheral pituitary hormones and are consistent with the hypothesis that a local feedback loop exists within the testis.

1984 ◽  
Vol 102 (3) ◽  
pp. 319-327 ◽  
Author(s):  
R. M. Sharpe ◽  
I. Cooper ◽  
D. G. Doogan

ABSTRACT Adult rats were made unilaterally cryptorchid (UCD) and 6–7 weeks later Leydig cells were isolated from the scrotal and abdominal testes and their capacity to secrete testosterone in vitro was compared. Basal testosterone production by Leydig cells from the abdominal testes of UCD rats was lowered, compared with cells from the contralateral scrotal testes, whilst their responsiveness to both human chorionic gonadotrophin and an LH releasing hormone agonist was enhanced two- to threefold (P< 0·001) compared both with cells from the contralateral scrotal testes and with cells isolated from untreated rats of the same age. In the UCD rats, concentrations of testosterone in testicular interstitial fluid (IF) were reduced (P< 0·001) by 70–90% in abdominal, compared with scrotal, testes. A similar reduction was evident in the levels of testosterone in spermatic venous blood, and both this decrease and that in IF levels of testosterone varied according to the degree of testicular involution. The ontogeny of the above changes was investigated. After induction of unilateral cryptorchidism, the weight of the abdominal compared with the scrotal testis declined slowly, such that by day 5 there was only a 25% reduction in weight compared with a 70% reduction by day 40. In contrast, the levels of testosterone in IF from abdominal testes declined rapidly, such that by day 5 an 80% reduction was attained, compared with scrotal testes, with little further change by day 40. Hormone-stimulated testosterone production by Leydig cells isolated from the abdominal testes was unchanged or marginally reduced over the first 3 days compared with cells from the scrotal testes, but by day 5 there was a significant increase in responsiveness; this increase was of smaller magnitude than that evident at day 40. These results suggest a possible association between the fall in intratesticular levels of testosterone induced by unilateral cryptorchidism and the Leydig cell hypertrophy and hyper-responsiveness that occurs in the same testes. The implications with respect to altered Sertoli–Leydig cell interaction are discussed. J. Endocr. (1984) 102, 319–327


1987 ◽  
Vol 112 (2) ◽  
pp. 311-NP ◽  
Author(s):  
H. D. Nicholson ◽  
R. T. S. Worley ◽  
S. E. F. Guldenaar ◽  
B. T. Pickering

ABSTRACT An oxytocin-like peptide is present in the interstitial cells of the testis, and testicular concentrations of oxytocin have been shown to increase seminiferous tubule movements in vitro. We have used the drug ethan-1,2-dimethanesulphonate (EDS), which depletes the Leydig cell population of the adult rat testis, to examine further the relationships between the Leydig cell, testicular oxytocin and tubular movements. Adult rats were injected i.p. with a single dose of EDS (75 mg/kg) or of vehicle (25% dimethyl sulphoxide). Histological study 3 and 10 days after treatment with EDS showed a reduction in the number of interstitial cells, and levels of oxytocin immunoreactivity were undetectable by radioimmunoassay. Immunostaining revealed very few oxytocin-reactive cells. Spontaneous contractile activity of the seminiferous tubules in vitro was also dramatically reduced, but could be restored by the addition of oxytocin to the medium. Four weeks after EDS treatment, the interstitial cells were similar to those in the control animals both in number and in immunostaining; immunoassayable oxytocin was present and tubular movements were normal. The EDS effect, seen at 3 and 10 days, was not altered by daily treatment with testosterone. However, repopulation of the testes with oxytocin-immunoreactive cells was not seen until 6 weeks in the testosterone-treated animals. We suggest that the Leydig cells are the main source of oxytocin immunoreactivity in the testis and that this oxytocin is involved in modulating seminiferous tubule movements and the resultant sperm transport. The results also imply that testosterone does not play a major role in controlling tubular activity in the mature rat. J. Endocr. (1987) 112, 311–316


1990 ◽  
Vol 127 (1) ◽  
pp. 47-NP ◽  
Author(s):  
D. S. Keeney ◽  
R. L. Sprando ◽  
B. Robaire ◽  
B. R. Zirkin ◽  
L. L. Ewing

ABSTRACT The purpose of this study was to determine whether Leydig cell volume and function could recover fully from long-term LH deprivation upon restoration of endogenous LH secretion, and whether the restoration of LH would elicit a mitogenic response, i.e. stimulate Leydig cell proliferation or affect Leydig cell number per testis. LH secretion was inhibited by treating adult rats with testosterone and oestradiol-filled (TO) silicone elastomer implants (16 weeks), and was restored by removing the implants. Changes in serum concentrations of LH and FSH, LH-stimulated testosterone secretion by testes perfused in vitro, Leydig cell volume and number per testis, average Leydig cell volume and Leydig cell [3H]thymidine incorporation were measured at weekly intervals following implant removal. The TO implants inhibited (P < 0·01) LH secretion, but serum concentrations of FSH were not significantly different (P > 0·10) from control values. After implant removal, serum LH returned to control values within 1 week, whereas serum FSH increased twofold (P < 0·01) and returned to control values at 4 weeks. LH-stimulated in-vitro testosterone secretion was inhibited by more than 99% in TO-implanted rats, but increased (P < 0·01) to 80% of control values by 8 weeks after implant removal. The total volume of Leydig cells per testis and the volume of an average Leydig cell were 14 and 19% of control values respectively, after 16 weeks of TO implantation (P < 0·01), but returned to 83 and 86% of controls (P > 0·10) respectively, by 6 weeks after implant removal. Leydig cell proliferation ([3H]thymidine labelling index) was low (< 0·1%) in both control and TO-implanted rats, increased (P < 0·01) fivefold from 1 to 4 weeks after implant removal and then declined to control values at 6 weeks. The increase in Leydig cell [3H]thymidine incorporation was mimicked by treating TO-implanted rats with exogenous LH, but not FSH. Leydig cells were identified in both the interstitium and the lamina propria of the seminiferous epithelium. The proportion of Leydig cell nuclei in the lamina propria was 30-fold greater (P < 0·01) at 1 and 3 weeks after implant removal (3%) compared with that for control and TO-implanted rats (0·1%). Total Leydig cell number per testis was marginally but not significantly (P = 0·06) decreased in rats treated with TO implants for 16 weeks when compared with controls (18·4±2·2 vs 25·4±1·2 × 106). Three weeks after implant removal, the numbers of Leydig cells per testis were identical (26·8±2·8 × 106) to those in control animals. These results not only demonstrate dramatic morphogenic effects of LH on mature rat Leydig cells, but also suggest that endogenous LH might be mitogenic at least to a subpopulation of Leydig cells. Journal of Endocrinology (1990) 127,47–58


1991 ◽  
Vol 131 (3) ◽  
pp. 443-449 ◽  
Author(s):  
L. Murphy ◽  
P. J. O'Shaughnessy

ABSTRACT Testicular feminized (Tfm) mice are totally insensitive to androgen and may be used to study the role of the androgen receptor in normal development and function. We have examined testicular and Leydig cell steroidogenesis in Tfm mice. Serum bioactive LH was high in Tfm mice but serum testosterone was low and this was associated with a severe reduction in testicular testosterone production in vitro. Examination of [3H]pregnenolone metabolism by testes of Tfm mice indicated that progesterone, rather than testosterone, was the major steroid produced. Leydig cells were isolated from normal and Tfm mice and from normal mice in which testicular descent was surgically prevented before puberty. As in whole testes, androgen production in response to human chorionic gonadotrophin was severely reduced in Leydig cells from testes of Tfm mice compared with normal or cryptorchid groups. In contrast, progesterone production by Leydig cells from testes of Tfm mice was markedly increased in comparison with other groups. Total steroid production (progesterone plus androstenedione plus testosterone), however, was only 24% of normal in Leydig cells from Tfm mice. The pattern of steroid production by Leydig cells from cryptorchid testes was similar to control, although total steroid production was reduced to about 50% (this was significantly higher than the Tfm group, P<0·05). The high progesterone/androgen ratio in testes from Tfm mice suggested that 17α-hydroxylase was depleted in these animals. To confirm this, activity of the four major steroidogenic enzymes associated with the smooth endoplasmic reticulum was measured. Activities (per testis) of 3β-hydroxysteroid dehydrogenase and 5α-reductase were normal in Tfm and cryptorchid mice but, as expected, 17α-hydroxylase activity was only 2·4% of control and 4·5% of cryptorchid testes. 17-Ketosteroid reductase activity was markedly reduced in cryptorchid testes (14·4% of control) but there was a further reduction in testes from Tfm mice to 0·1% of control. Results show that the Tfm mutation is associated with marked loss of 17α-hydroxylase and 17-ketosteroid reductase activities. This suggests that these enzymes may require receptor-mediated androgen stimulation during development to express normal activity. Journal of Endocrinology (1991) 131, 443–449


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Xiangcheng Zhan ◽  
Jingwei Zhang ◽  
Saiyang Li ◽  
Xiaolu Zhang ◽  
Linchao Li ◽  
...  

Abstract Background Monocyte chemoattractant protein-1(MCP-1) is a chemokine secreted by Leydig cells and peritubular myoid cells in the rat testis. Its role in regulating the development of Leydig cells via autocrine and paracrine is still unclear. The objective of the current study was to investigate the effects of MCP-1 on Leydig cell regeneration from stem cells in vivo and on Leydig cell development in vitro. Results Intratesticular injection of MCP-1(10 ng/testis) into Leydig cell-depleted rat testis from post-EDS day 14 to 28 significantly increased serum testosterone and luteinizing hormone levels, up-regulated the expression of Leydig cell proteins, LHCGR, SCARB1, CYP11A1, HSD3B1, CYP17A1, and HSD17B3 without affecting progenitor Leydig cell proliferation, as well as increased ERK1/2 phosphorylation. MCP-1 (100 ng/ml) significantly increased medium testosterone levels and up-regulated LHCGR, CYP11A1, and HSD3B1 expression without affecting EdU incorporation into stem cells after in vitro culture for 7 days. RS102895, a CCR2 inhibitor, reversed MCP-1-mediated increase of testosterone level after culture in combination with MCP-1. Conclusion MCP-1 stimulates the differentiation of stem and progenitor Leydig cells without affecting their proliferation.


1989 ◽  
Vol 123 (2) ◽  
pp. 197-203 ◽  
Author(s):  
G. Edwards ◽  
R. Lendon ◽  
I. D. Morris

ABSTRACT Ethane-1,2-dimethanesulphonate (EDS) destroys Leydig cells in the testis of the adult rat and subsequently a new population of Leydig cells develops. It has been reported that EDS is not cytocidal to the new immature Leydig cell population. In the present study, the effect of increasing the time-interval between injections of EDS on cytotoxicity to Leydig cells was examined. At time-intervals of 4–10 weeks between injections the response was similar to that seen after a single injection of EDS to the adult rat. Four days after the second injection, EDS was found to reduce substantially serum testosterone concentrations and in-vitro binding of 125I-labelled human chorionic gonadotrophin (hCG) to testicular LH receptors which can be correlated with Leydig cell destruction. However, when the interval was only 2 or 3 weeks there was no reduction in serum testosterone, and 125I-labelled hCG binding was not so markedly reduced. During days 1–6 after a second injection of EDS, administered 3 weeks after the first, there were marked reductions in serum testosterone concentrations and in 125I-labelled hCG binding to testis homogenates within 24 h. Recovery from the effects of EDS was rapid, and increased Leydig cell activity was seen from 2 to 6 days after injection. In contrast to the established changes in the adult rat, there was only a 50% reduction in the number of Leydig cells positive for 3β-hydroxysteroid dehydrogenase 2 days after the second injection of EDS, and after 6 days the number of cells had increased. These experiments show that the immature Leydig cell of the rat is sensitive to the cytotoxic effects of EDS but that the temporal changes in Leydig cell activity after EDS treatment are different in developing and mature Leydig cell populations. The data are consistent with the view that EDS is preferentially cytotoxic towards steroidogenically active Leydig cells, allowing the resident population of precursor cells to continue to respond to the prevailing homeostatic mechanisms. Journal of Endocrinology (1989) 123, 197–203


1996 ◽  
Vol 150 (1) ◽  
pp. 57-65 ◽  
Author(s):  
F Gaytan ◽  
C Bellido ◽  
C Morales ◽  
M García ◽  
N van Rooijen ◽  
...  

Abstract Testicular macrophages are a relevant cell type for the regulation of Leydig cell steroidogenesis. The availability of liposome technology allows in vivo manipulation of macrophages in order to analyze their role in the regulation of the hypothalamic-pituitary-testicular axis. In this study, adult (70 days of age) and prepubertal (22 days of age) rats were injected intratesticularly with liposomes containing either dichloromethylene diphosphonate (C12MDP) to deplete testicular macrophages or muramyl tripeptide (MTP-PE) to activate them. Control rats were injected with the corresponding volumes of 0·9% NaCl. Animals were killed 10 days after treatment. Adult rats injected bilaterally or unilaterally with C12MDP liposomes showed increased serum LH and testosterone concentrations, as well as increased testosterone concentrations in the testicular interstitial fluid. In unilaterally injected rats, testosterone concentrations in the interstitial fluid were higher in the macrophage-containing testes than in the contralateral, macrophage-depleted testes. Adult rats treated bilaterally with MTP-PE liposomes showed increased numbers of testicular macrophages, whereas the number of Leydig cells was unchanged. Serum LH concentrations were decreased, but no changes were found in testosterone concentrations. Prepubertal rats treated bilaterally with C12MDP liposomes showed decreased numbers of Leydig cells. However, serum LH and testosterone concentrations were increased. Otherwise, prepubertal rats treated bilaterally with MTP-PE liposomes showed increased numbers of macrophages and Leydig cells, as well as increased serum testosterone concentrations. These data suggest that testicular macrophage-derived factors act at two different levels in the pituitary-testicular axis: first, at a central level by inhibiting LH secretion, and secondly, at a local level by stimulating Leydig cell steroidogenesis. Journal of Endocrinology (1996) 150, 57–65


1995 ◽  
Vol 146 (1) ◽  
pp. 15-21 ◽  
Author(s):  
R Aguilar ◽  
F Antón ◽  
C Bellido ◽  
E Aguilar ◽  
F Gaytan

Abstract Testicular serotonin (5HT) concentrations were determined by HPLC in the testes of rats treated neonatally with oestradiol benzoate (EB) and in adult rats treated with the Leydig cell cytotoxic ethylene dimethane sulphonate (EDS). 5HT concentrations were related to mast cell numbers. EB-treated rats showed an accumulation of mast cells in the testes at 35 and 70 days of age and increased 5HT concentrations in both the interstitial fluid and the testicular capsule, whereas no increases in 5HT concentrations or in the number of mast cells were found for the ventral prostate of these animals. On the contrary, 5HT concentrations were not related to the number of Leydig cells. In EB-treated rats, in which Leydig cells were nearly absent at 35 days of age, 5HT concentrations were significantly increased. Furthermore, EDS-treated rats did not show significant changes in 5HT concentrations, in spite of the elimination of Leydig cells. These data suggest that mast cells are a major source of serotonin in the rat testis. Journal of Endocrinology (1995) 146, 15–21


2019 ◽  
Vol 34 (9) ◽  
pp. 1621-1631 ◽  
Author(s):  
J Eliveld ◽  
E A van den Berg ◽  
J V Chikhovskaya ◽  
S K M van Daalen ◽  
C M de Winter-Korver ◽  
...  

Abstract STUDY QUESTION Is it possible to differentiate primary human testicular platelet-derived growth factor receptor alpha positive (PDGFRα+) cells into functional Leydig cells? SUMMARY ANSWER Although human testicular PDGFRα+ cells are multipotent and are capable of differentiating into steroidogenic cells with Leydig cell characteristics, they are not able to produce testosterone after differentiation. WHAT IS KNOWN ALREADY In rodents, stem Leydig cells (SLCs) that have been identified and isolated using the marker PDGFRα can give rise to adult testosterone-producing Leydig cells after appropriate differentiation in vitro. Although PDGFRα+ cells have also been identified in human testicular tissue, so far there is no evidence that these cells are true human SLCs that can differentiate into functional Leydig cells in vitro or in vivo. STUDY DESIGN, SIZE, DURATION We isolated testicular cells enriched for interstitial cells from frozen–thawed fragments of testicular tissue from four human donors. Depending on the obtained cell number, PDGFRα+-sorted cells of three to four donors were exposed to differentiation conditions in vitro to stimulate development into adipocytes, osteocytes, chondrocytes or into Leydig cells. We compared their cell characteristics with cells directly after sorting and cells in propagation conditions. To investigate their differentiation potential in vivo, PDGFRα+-sorted cells were transplanted in the testis of 12 luteinizing hormone receptor-knockout (LuRKO) mice of which 6 mice received immunosuppression treatment. An additional six mice did not receive cell transplantation and were used as a control. PARTICIPANTS/MATERIALS, SETTING, METHODS Human testicular interstitial cells were cultured to Passage 3 and FACS sorted for HLA-A,B,C+/CD34−/PDGFRα+. We examined their mesenchymal stromal cell (MSC) membrane protein expression by FACS analyses. Furthermore, we investigated lineage-specific staining and gene expression after MSC trilineage differentiation. For the differentiation into Leydig cells, PDGFRα+-sorted cells were cultured in either proliferation or differentiation medium for 28 days, after which they were stimulated either with or without hCG, forskolin or dbcAMP for 24 h to examine the increase in gene expression of steroidogenic enzymes using qPCR. In addition, testosterone, androstenedione and progesterone levels were measured in the culture medium. We also transplanted human PDGFRα+-sorted testicular interstitial cells into the testis of LuRKO mice. Serum was collected at several time points after transplantation, and testosterone was measured. Twenty weeks after transplantation testes were collected for histological examination. MAIN RESULTS AND THE ROLE OF CHANCE From primary cultured human testicular interstitial cells at Passage 3, we could obtain a population of HLA-A,B,C+/CD34−/PDGFRα+ cells by FACS. The sorted cells showed characteristics of MSC and were able to differentiate into adipocytes, chondrocytes and osteocytes. Upon directed differentiation into Leydig cells in vitro, we observed a significant increase in the expression of HSD3B2 and INSL3. After 24 h stimulation with forskolin or dbcAMP, a significantly increased expression of STAR and CYP11A1 was observed. The cells already expressed HSD17B3 and CYP17A1 before differentiation but the expression of these genes were not significantly increased after differentiation and stimulation. Testosterone levels could not be detected in the medium in any of the stimulation conditions, but after stimulation with forskolin or dbcAMP, androstenedione and progesterone were detected in culture medium. After transplantation of the human cells into the testes of LuRKO mice, no significant increase in serum testosterone levels was found compared to the controls. Also, no human cells were identified in the interstitium of mice testes 20 weeks after transplantation. LARGE SCALE DATA N/A LIMITATIONS, REASONS FOR CAUTION This study was performed using tissue from only four donors because of limitations in donor material. Because of the need of sufficient cell numbers, we first propagated cells to passage 3 before FACS of the desired cell population was performed. We cannot rule out this propagation of the cells resulted in loss of stem cell properties. WIDER IMPLICATIONS OF THE FINDINGS A lot of information on Leydig cell development is obtained from rodent studies, while the knowledge on human Leydig cell development is very limited. Our study shows that human testicular interstitial PDGFRα+ cells have different characteristics compared to rodent testicular PDGFRα+ cells in gene expression levels of steroidogenic enzymes and potential to differentiate in adult Leydig cells under comparable culture conditions. This emphasizes the need for confirming results from rodent studies in the human situation to be able to translate this knowledge to the human conditions, to eventually contribute to improvements of testosterone replacement therapies or establishing alternative cell therapies in the future, potentially based on SLCs. STUDY FUNDING/COMPETING INTEREST(S) This study was funded by Amsterdam UMC, location AMC, Amsterdam, the Netherlands. All authors declare no competing interests.


2020 ◽  
Vol 35 (12) ◽  
pp. 2663-2676
Author(s):  
Valentina Mularoni ◽  
Valentina Esposito ◽  
Sara Di Persio ◽  
Elena Vicini ◽  
Gustavo Spadetta ◽  
...  

Abstract STUDY QUESTION What are the consequences of ageing on human Leydig cell number and hormonal function? SUMMARY ANSWER Leydig cell number significantly decreases in parallel with INSL3 expression and Sertoli cell number in aged men, yet the in vitro Leydig cell androgenic potential does not appear to be compromised by advancing age. WHAT IS KNOWN ALREADY There is extensive evidence that ageing is accompanied by decline in serum testosterone levels, a general involution of testis morphology and reduced spermatogenic function. A few studies have previously addressed single features of the human aged testis phenotype one at a time, but mostly in tissue from patients with prostate cancer. STUDY DESIGN, SIZE, DURATION This comprehensive study examined testis morphology, Leydig cell and Sertoli cell number, steroidogenic enzyme expression, INSL3 expression and androgen secretion by testicular fragments in vitro. The majority of these endpoints were concomitantly evaluated in the same individuals that all displayed complete spermatogenesis. PARTICIPANTS/MATERIALS, SETTING, METHODS Testis biopsies were obtained from 15 heart beating organ donors (age range: 19–85 years) and 24 patients (age range: 19–45 years) with complete spermatogenesis. Leydig cells and Sertoli cells were counted following identification by immunohistochemical staining of specific cell markers. Gene expression analysis of INSL3 and steroidogenic enzymes was carried out by qRT-PCR. Secretion of 17-OH-progesterone, dehydroepiandrosterone, androstenedione and testosterone by in vitro cultured testis fragments was measured by LC-MS/MS. All endpoints were analysed in relation to age. MAIN RESULTS AND THE ROLE OF CHANCE Increasing age was negatively associated with Leydig cell number (R = −0.49; P &lt; 0.01) and concomitantly with the Sertoli cell population size (R= −0.55; P &lt; 0.001). A positive correlation (R = 0.57; P &lt; 0.001) between Sertoli cell and Leydig cell numbers was detected at all ages, indicating that somatic cell attrition is a relevant cellular manifestation of human testis status during ageing. INSL3 mRNA expression (R= −0.52; P &lt; 0.05) changed in parallel with Leydig cell number and age. Importantly, steroidogenic capacity of Leydig cells in cultured testis tissue fragments from young and old donors did not differ. Consistently, age did not influence the mRNA expression of steroidogenic enzymes. The described changes in Leydig cell phenotype with ageing are strengthened by the fact that the different age-related effects were mostly evaluated in tissue from the same men. LIMITATIONS, REASONS FOR CAUTION In vitro androgen production analysis could not be correlated with in vivo hormone values of the organ donors. In addition, the number of samples was relatively small and there was scarce information about the concomitant presence of potential confounding variables. WIDER IMPLICATIONS OF THE FINDINGS This study provides a novel insight into the effects of ageing on human Leydig cell status. The correlation between Leydig cell number and Sertoli cell number at any age implies a connection between these two cell types, which may be of particular relevance in understanding male reproductive disorders in the elderly. However aged Leydig cells do not lose their in vitro ability to produce androgens. Our data have implications in the understanding of the physiological role and regulation of intratesticular sex steroid levels during the complex process of ageing in humans. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by grants from Prin 2010 and 2017. The authors have no conflicts of interest. TRIAL REGISTRATION NUMBER N/A.


Sign in / Sign up

Export Citation Format

Share Document