steroidogenic enzymes
Recently Published Documents





2022 ◽  
Vol 12 ◽  
Michael B. Morgan ◽  
James Ross ◽  
Joseph Ellwanger ◽  
Rebecca Martin Phrommala ◽  
Hannah Youngblood ◽  

Endocrine disruption is suspected in cnidarians, but questions remain how occurs. Steroid sex hormones are detected in corals and sea anemones even though these animals do not have estrogen receptors and their repertoire of steroidogenic enzymes appears to be incomplete. Pathways associated with sex hormone biosynthesis and sterol signaling are an understudied area in cnidarian biology. The objective of this study was to identify a suite of genes that can be linked to exposure of endocrine disruptors. Exaiptasia diaphana were exposed to nominal 20ppb concentrations of estradiol (E2), testosterone (T), cholesterol, oxybenzone (BP-3), or benzyl butyl phthalate (BBP) for 4 h. Eleven genes of interest (GOIs) were chosen from a previously generated EST library. The GOIs are 17β-hydroxysteroid dehydrogenases type 14 (17β HSD14) and type 12 (17β HSD12), Niemann-Pick C type 2 (NPC2), Equistatin (EI), Complement component C3 (C3), Cathepsin L (CTSL), Patched domain-containing protein 3 (PTCH3), Smoothened (SMO), Desert Hedgehog (DHH), Zinc finger protein GLI2 (GLI2), and Vitellogenin (VTG). These GOIs were selected because of functional associations with steroid hormone biosynthesis; cholesterol binding/transport; immunity; phagocytosis; or Hedgehog signaling. Quantitative Real-Time PCR quantified expression of GOIs. In silico modelling utilized protein structures from Protein Data Bank as well as creating protein structures with SWISS-MODEL. Results show transcription of steroidogenic enzymes, and cholesterol binding/transport proteins have similar transcription profiles for E2, T, and cholesterol treatments, but different profiles when BP-3 or BBP is present. C3 expression can differentiate between exposures to BP-3 versus BBP as well as exposure to cholesterol versus sex hormones. In silico modelling revealed all ligands (E2, T, cholesterol, BBP, and BP-3) have favorable binding affinities with 17β HSD14, 17β HSD12, NPC2, SMO, and PTCH proteins. VTG expression was down-regulated in the sterol treatments but up-regulated in BP-3 and BBP treatments. In summary, these eleven GOIs collectively generate unique transcriptional profiles capable of discriminating between the five chemical exposures used in this investigation. This suite of GOIs are candidate biomarkers for detecting transcriptional changes in steroidogenesis, gametogenesis, sterol transport, and Hedgehog signaling. Detection of disruptions in these pathways offers new insight into endocrine disruption in cnidarians.

Obesity Facts ◽  
2022 ◽  
Isabel Viola Wagner ◽  
Iuliia Savchuk ◽  
Lena Sahlin ◽  
Alexandra Kulle ◽  
Nora Klöting ◽  

Introduction: Obesity in women is often associated with hyperandrogenism but the role of adipose tissue (AT) in androgen synthesis remains unclear. Therefore, we studied whether AT could be a source of androgens promoting hyperandrogenism. Methods: Subcutaneous and visceral AT was collected from lean and obese women. Androgen levels were evaluated in serum, AT and cell culture supernatant. Gene and protein expression of steroidogenic enzymes were determined. Results: Obese subjects had elevated serum androgen levels, which reduced after weight loss. Androgens were measurable in AT and in cell culture supernatants of adipocytes. Steroids were higher in AT from obese women, with the highest difference for testosterone in visceral AT (+7.9 fold, p=0.032). Steroidogenic enzymes were expressed in human AT with depot-specific differences. Obese women showed a significantly higher expression of genes of the backdoor pathway and of CYP19 in visceral AT. Conclusion: The whole steroidogenic machinery of the classical and backdoor pathways of steroidogenesis, and the capacity for androgen biosynthesis, were found in both AT depots and cultured adipocytes. Therefore, we hypothesize that AT is a de novo site of androgen production and the backdoor pathway of steroidogenesis might be a new pathomechanism for hyperandrogenism in women with obesity.

Endocrinology ◽  
2021 ◽  
Melody Salehzadeh ◽  
Jordan E Hamden ◽  
Michael X Li ◽  
Hitasha Bajaj ◽  
Ruolan S Wu ◽  

Abstract Glucocorticoids (GCs) are critical modulators of the immune system. The hypothalamic-pituitary-adrenal (HPA) axis regulates circulating GC levels and is stimulated by endotoxins. Lymphoid organs also produce GCs; however, it is not known how lymphoid GC levels are regulated in response to endotoxins. We assessed whether an acute challenge of lipopolysaccharide (LPS) increases lymphoid levels of GCs, steroidogenic enzymes expression, and components of the HPA axis (e.g., CRH) expression. We administered LPS (50µg/kg i.p.) or vehicle control to male and female C57BL/6J neonatal (post-natal day (PND) 5) and adult (PND90) mice and collected blood, bone marrow, thymus, and spleen 4 hr later. We measured progesterone, 11-deoxycorticosterone (DOC), corticosterone, and 11-dehydrocorticosterone (DHC) via liquid chromatography tandem mass spectrometry (LC-MS/MS). We measured gene expression of key steroidogenic enzymes (Cyp11b1, Hsd11b1, and Hsd11b2) and HPA axis components (Crh, Crhr1, Pomc, and Mc2r) via qPCR. At PND5, LPS induced greater increases in steroid levels in lymphoid organs than in blood. In contrast, at PND90, LPS induced greater increases in steroid levels in blood than in lymphoid organs. Steroidogenic enzyme transcripts were present in all lymphoid organs, and LPS altered steroidogenic enzyme expression predominately in the spleen. Lastly, we detected transcripts of key HPA axis components in all lymphoid organs, and there was an effect of LPS in the spleen. Taken together, these data suggest that LPS regulates GC production by lymphoid organs, similar to its effects on the adrenal glands, and the effects of LPS might be mediated by local expression of CRH and ACTH.

S Kehoe ◽  
K Jewgenow ◽  
P R Johnston ◽  
B C Braun

Abstract Key biomolecular processes which regulate primordial ovarian follicle dormancy and early folliculogenesis in mammalian ovaries are not fully understood. The domestic cat is a useful model to study ovarian folliculogenesis and is the most relevant for developing in vitro growth methods to be implemented in wild felid conservation breeding programs. Previously, RNA-sequencing of primordial, primary, and secondary follicle samples from domestic cat implicated ovarian steroidogenesis and steroid reception during follicle development. Here we aimed to identify which sex steroid biosynthesis and metabolism enzymes, gonadotropin receptors, and sex steroid receptors are present and may be potential regulators. Differential gene expression, functional annotation, and enrichment analyses were employed and protein localisation was studied too. Gene transcripts for PGR, PGRMC1, AR (steroid receptors), CYP11A1, CYP17A1, HSD17B1 and HSD17B17 (steroidogenic enzymes), and STS (steroid metabolising enzyme) were significantly differentially expressed (Q values of ≤0.05). Differential gene expression increased in all transcripts during follicle transitions apart from AR which decreased by the secondary stage. Immunohistochemistry localised FSHR and LHCGR to oocytes at each stage. PGRMC1 immunostaining was strongest in granulosa cells whereas AR was strongest in oocytes throughout each stage. Protein signals for steroidogenic enzymes were only detectable in secondary follicles. Products of these significantly differentially expressed genes may regulate domestic cat preantral folliculogenesis. In vitro growth could be optimised as all early follicles express gonadotropin and steroid receptors meaning hormone interaction and response may be possible. Protein expression analyses of early secondary follicles supported its potential for producing sex steroids.

Biomedicines ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1190
Chitra Subramanian ◽  
Reid McCallister ◽  
Dawn Kuszynski ◽  
Mark S. Cohen

Introduction: Adrenocortical carcinoma (ACC) is a rare endocrine malignancy, with very poor prognosis as a majority of the patients have advanced disease at the time of diagnosis. Currently, adjuvant therapy for most patients consists of either mitotane (M) alone or in combination with multi-drug chemotherapeutics such as etoposide (E), doxorubicin (D), and cisplatin (P), known as the Italian protocol (IP; EDPM). This multi-drug treatment regimen, however, carries significant toxicity potential for patients. One way to improve toxicity profiles with these drugs in combination is to understand where their synergy occurs and over what dosing range so that lower dose regimens could be applied in combination with equal or improved efficacy. We hypothesize that a better understanding of the synergistic effects as well as the regulation of steroidogenic enzymes during combination therapy may provide more optimized combinational options with good potency and lower toxicity profiles. Methods: Two human ACC cell lines, NCI-H295R (hormonally active) and SW13 (hormonally inactive), were grown in 2D culture in appropriate growth medium. The viability of the cells after treatment with varying concentrations of the drugs (E, D, and P) either alone or in combinations with M was determined using the CellTiter Glow assay after 72 h, and the combination index for each was calculated using Compusyn by the Chou–Talalay method. The expression levels of enzymes associated with steroidogenesis were evaluated by RT-PCR in NCI-H295R. Results: When both cell lines were treated with M (ranging 25–50 μM), +E (ranging 18.75–75 μM), and +D (ranging 0.625–2.5 μM) we observed a synergistic effect (CI < 1) with potency equivalent to the full Italian protocol (IP), whereas combining M + P + D had an antagonistic effect (CI > 1) indicating the negative effect of adding cisplatin in the combination. Comparing the hormonally active and inactive cell lines, M + P + E was antagonistic in NCI-H295R and synergistic in SW13. Treatment of NCI-H295R cells with antagonistic combinations (M + P + D, M + P + E) resulted in a significant decrease in the levels of steroidogenic enzymes STAR, CYP11A1, and CYP21A2 compared to IP (p < 0.05) while M + E + D resulted in increased expression or no significant effect compared to IP across all genes tested. Conclusions: The synergistic effect for M + E + D was significant and equivalent in potency to the full IP in both cell lines and resulted in a steroidogenic gene expression profile similar to or better than that of full IP, warranting further evaluation. Future in vivo evaluation of the combination of M + E + D (with removal of P from the IP regimen) may lower toxicity while maintaining anticancer efficacy in ACC.

Hypertension ◽  
2021 ◽  
Vol 78 (Suppl_1) ◽  
Yusuf Ali ◽  
Elise P Gomez-sanchez ◽  
Celso E Gomez-Sanchez

A recent study reported that mTOR inhibition suppressed plasma aldosterone in mice but not humans. We investigated the effects and molecular mechanisms of mTOR inhibition on steroidogenesis using the human adrenocarcinoma HAC15. Methods: HAC15 cells were incubated with an mTOR activator and several inhibitors including AZD8055 (AZD) at concentrations of 0 to 1000 nmol/L +/- 100 nmol/L Angiotensin II (AngII) to stimulate steroid synthesis. The raptor and rictor genes were deleted by lentiviral mediated transduction of CRISPR/gRNA. Their presence was demonstrated by Western blotting and immunocytochemical staining. Aldo and cortisol synthesis were measured by ELISA; steroidogenic enzymes, p70S6K and AKT phophorylation by western blot. Results: The raptor and rictor, adaptor proteins of mTOR complex 1 and 2, were demonstrated by Western blotting and IHC staining in HAC15 cells. The mTOR inhibitors decreased AngII aldosterone synthesis; AZD was the most effective. The mTOR activator MHY did not stimulate aldosterone synthesis. AZD significantly suppressed both Ang II-induced aldo and cortisol formation in a dose-dependent manner without altering cell proliferation and viability. AZD did not alter forskolin-induced aldo production, suggesting that AZD inhibition of aldo biosynthesis is adenylate cyclase-independent and is specific to the AngII signaling pathway. AZD dose-dependently suppressed AngII-induced steroidogenic enzymes including 3β-hydroxysteroid dehydrogenase-type 2, CYP17A1, StAR, and CYP11B2 protein levels. p70S6K and AKT phosphorylation levels were inhibited by AZD. As mTOR exerts its effects by forming complexes with adaptor proteins raptor and rictor, we studied the role of these individual complexes further. CRISPR/ gRNA-mediated raptor and rictor knockdown in HAC15 cells significantly decreased AngII-induced steroidogenic enzymes levels and aldo and cortisol production. Conclusion: These results suggest that mTOR signaling has a role in transducing the AngII signal for aldo and cortisol biosynthesis and that inhibition of mTOR is a therapeutic option for conditions associated with excessive RAS-mediated steroid synthesis.

Animals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 2322
Robyn E. Ellerbrock ◽  
Giorgia Podico ◽  
Kirsten E. Scoggin ◽  
Barry A. Ball ◽  
Mariano Carossino ◽  

The expression pattern and distribution of sex steroid receptors and steroidogenic enzymes during development of the equine accessory sex glands has not previously been described. We hypothesized that equine steroidogenic enzyme and sex steroid receptor expression is dependent on reproductive status. Accessory sex glands were harvested from mature stallions, pre-pubertal colts, geldings, and fetuses. Expression of mRNA for estrogen receptor 1 (ESR1), estrogen receptor 2 (ESR2), androgen receptor (AR), 3β-Hydroxysteroid dehydrogenase/Δ5-4 isomerase (3βHSD), P450,17α hydroxylase, 17–20 lyase (CYP17), and aromatase (CYP19) were quantified by RT-PCR, and protein localization of AR, ER-α, ER-β, and 3βHSD were investigated by immunohistochemistry. Expression of AR, ESR2, CYP17, or CYP19 in the ampulla was not different across reproductive statuses (p > 0.1), while expression of ESR1 was higher in the ampulla of geldings and fetuses than those of stallions or colts (p < 0.05). AR, ESR1 and ESR2 expression were decreased in stallion vesicular glands compared to the fetus or gelding, while AR, ESR1, and CYP17 expression were decreased in the bulbourethral glands compared to other glands. ESR1 expression was increased in the prostate compared to the bulbourethral glands, and no differences were seen with CYP19 or 3β-HSD. In conclusion, sex steroid receptors are expressed in all equine male accessory sex glands in all stages of life, while the steroidogenic enzymes were weakly and variably expressed.

PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0253975
Valentin Rousson ◽  
Daniel Ackermann ◽  
Belen Ponte ◽  
Menno Pruijm ◽  
Idris Guessous ◽  

Objective Diagnostic ratios calculated from urinary steroid hormone metabolites are used as a measure for the relative activity of steroidogenic enzymes or pathways in the clinical investigation of steroid metabolism disorders. However, population-based sex- and age-specific reference intervals and day-night differences in adults are lacking. Methods Sixty-five diagnostic ratios were calculated from steroid metabolites measured by GC-MS in day- and night-time and in 24-hour urine from 1128 adults recruited within the Swiss Kidney Project on Genes in Hypertension (SKIPOGH), a population-based, multicenter cohort study. Differences related to sex, age and day- and night-time were evaluated and reference curves in function of age and sex were modelled by multivariable linear mixed regression for diagnostic ratios and were compared to values from the literature. Results Most ratios had sex- and age-specific relationships. For each ratio, percentiles were plotted in function of age and sex in order to create reference curves and sex- and age-specific reference intervals derived from 2.5th and 97.5th percentiles were obtained. Most ratios reflected a higher enzyme activity during the day compared to the night. Conclusions Sex- and age-specific references for 24 hours, day and night urine steroid metabolite ratios may help distinguishing between health and disease when investigating human disorders affecting steroid synthesis and metabolism. The day-night differences observed for most of the diagnostic ratios suggest a circadian rhythm for enzymes involved in human steroid hormones metabolism.

Sign in / Sign up

Export Citation Format

Share Document