scholarly journals Preclinical and clinical experiences with the role of somatostatin receptors in the treatment of pituitary adenomas

2007 ◽  
Vol 156 (suppl_1) ◽  
pp. S45-S51 ◽  
Author(s):  
Joost van der Hoek ◽  
Steven W J Lamberts ◽  
Leo J Hofland

The patho-physiological role of somatostatin receptor subtypes (sst) in neuro endocrine diseases has gained enhanced scientific interest in the past few years. The development of novel somatotropin-release inhibiting factor analogs, both sst-specific and universal ligands, seem promising as a tool to further increase fundamental insights in sst function. Eventually, this research should result in novel medical therapeutic opportunities in patients suffering from neuro-endocrine diseases. In the present review, the functional role of sst in all types of pituitary adenomas, based on recent preclinical and clinical studies, is being discussed.

2009 ◽  
Vol 42 (5) ◽  
pp. 361-370 ◽  
Author(s):  
Diego Ferone ◽  
Federico Gatto ◽  
Marica Arvigo ◽  
Eugenia Resmini ◽  
Mara Boschetti ◽  
...  

The role of somatostatin and dopamine receptors as molecular targets for the treatment of patients with pituitary adenomas is well established. Indeed, dopamine and somatostatin receptor agonists are considered milestones for the medical therapy of these tumours. However, in recent years, the knowledge of the expression of subtypes of somatostatin and dopamine receptors in pituitary adenomas, as well as of the coexpression of both types of receptors in tumour cells, has increased considerably. Moreover, recent insights suggest a functional interface of dopamine and somatostatin receptors, when coexpressed in the same cells. This interaction has been suggested to occur via dimerisation of these G-protein-coupled receptors. In addition, there was renewed interest around the concept of cell specificity in response to ligand-induced receptor activation. New experimental drugs, including novel somatostatin analogues, binding to multiple somatostatin receptor subtypes, as well as hybrid somatostatin–dopamine compounds have been generated, and recently a completely novel class of molecules has been developed. These advances have opened new perspectives for the medical treatment of patients with pituitary tumours poorly responsive to the present clinically available drugs, and perhaps also for the treatment of other categories of neuroendocrine tumours. The aim of the present review is to summarise the novel insights in somatostatin and dopamine receptor pathophysiology, and to bring these new insights into perspective for the future strategies in the medical treatment of patients with pituitary adenomas.


2005 ◽  
Vol 15 (6) ◽  
pp. 377-383 ◽  
Author(s):  
Joost van Der Hoek ◽  
Steven W. J. Lamberts ◽  
Leo J. Hofland

2007 ◽  
Vol 156 (suppl_1) ◽  
pp. S3-S11 ◽  
Author(s):  
Giovanni Tulipano ◽  
Stefan Schulz

The experimental data reviewed in the present paper deal with the molecular events underlying the agonist-dependent regulation of the distinct somatostatin receptor subtypes and may suggest important clues about the clinical use of somatostatin analogs with different pattern of receptor specificity for the in vivo targeting of tumoral somatostatin receptors. Somatostatin receptor subtypes are characterized by differential β-arrestin trafficking and endosomal sorting upon agonist binding due, at least in part, to the differences in their C-terminal tails. Moreover, the subcellular expression pattern of somatostatin receptor subtypes and their activity in response to agonist treatment are affected by intracellular complements, such as proteins involved in intracellular vesicle trafficking. Different somatostatin analogs may induce distinct conformations of the receptor/ligand complex, preferentially coupled to either receptor signaling or receptor endocytosis.


2013 ◽  
Vol 169 (4) ◽  
pp. 391-400 ◽  
Author(s):  
Bernhard Mayr ◽  
Rolf Buslei ◽  
Marily Theodoropoulou ◽  
Günter K Stalla ◽  
Michael Buchfelder ◽  
...  

ObjectiveGH-producing pituitary adenomas display two distinct morphological patterns of cytoplasmic GH-containing secretory granules, namely the densely and sparsely granulated somatotroph adenoma subtype. It is unknown whether these morphological variants reflect distinct pathophysiological entities at the molecular level.MethodsIn 28 GH-producing adenoma tissues from a consecutive set of patients undergoing pituitary surgery for acromegaly, we studied the GH granulation pattern, the expression of somatostatin receptor subtypes (SSTR) as well as the calcium, cAMP and ZAC1 pathways in primary adenoma cell cultures.ResultsThe expression ofGSPoncogene was similar between densely and sparsely granulated somatotroph adenoma cells. There were no differences in the calcium, cAMP and ZAC1 pathways as well as in their regulation by SSTR agonists. SSTR2 was exclusively expressed in densely but not in sparsely granulated tumours (membrane expression 86 vs 0%; cytoplasmic expression 67 vs 0%). By contrast, expression of SSTR5 was only found in sparsely but not in densely granulated somatotroph adenomas (membrane expression 29 vs 0%; cytoplasmic expression 57 vs 0%).ConclusionsOur results indicate that different granulation patterns in GH-producing adenomas do not reflect differences in pathways and factors pivotal for somatotroph differentiation and function.In vitro, the vast majority of both densely and sparsely granulated tumour cells were responsive to SSTR activation at the molecular level. Sparsely granulated adenomas lacking SSTR2, but expressing SSTR5, might be responsive to novel SSTR agonists with increased affinity to SSTR5.


2019 ◽  
Vol 8 (8) ◽  
pp. 1213-1223 ◽  
Author(s):  
Sara Storvall ◽  
Helena Leijon ◽  
Eeva Ryhänen ◽  
Johanna Louhimo ◽  
Caj Haglund ◽  
...  

Introduction Parathyroid carcinoma represents a rare cause of primary hyperparathyroidism. Distinguishing carcinoma from the benign tumors underlying primary hyperparathyroidism remains challenging. The diagnostic criteria for parathyroid carcinoma are local and/or metastatic spreading. Atypical parathyroid adenomas share other histological features with carcinomas but lack invasive growth. Somatostatin receptors are commonly expressed in different neuroendocrine tumors, but whether this also holds for parathyroid tumors remains unknown. Aim Our aim is to examine the immunohistochemical expression of somatostatin receptor 1–5 in parathyroid typical adenomas, atypical adenomas and carcinomas. Methods We used a tissue microarray construct from a nationwide cohort of parathyroid carcinomas (n = 32), age- and gender-matched typical parathyroid adenomas (n = 72) and atypical parathyroid adenomas (n = 27) for immunohistochemistry of somatostatin receptor subtypes 1–5. We separately assessed cytoplasmic, membrane and nuclear expression and also investigated the associations with histological, biochemical and clinical characteristics. Results All parathyroid tumor subgroups expressed somatostatin receptors, although membrane expression appeared negligible. Except for somatostatin receptor 1, expression patterns differed between the three tumor types. Adenomas exhibited the weakest and carcinomas the strongest expression of somatostatin receptor 2, 3, 4 and 5. We observed the largest difference for cytoplasmic somatostatin receptor 5 expression. Conclusions Parathyroid adenomas, atypical adenomas and carcinomas all express somatostatin receptor subtypes 1–5. Somatostatin receptor 5 may serve as a potential tumor marker for malignancy. Studies exploring the role of somatostatin receptor imaging and receptor-specific therapies in patients with parathyroid carcinomas are needed.


2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. A325-A325
Author(s):  
Elizabeth Rico ◽  
Jian Zhao ◽  
Mi Chen ◽  
Ana Karin Kusnetzow ◽  
Yun Fei Zhu ◽  
...  

Abstract Congenital hyperinsulinism (HI) is the most common cause of persistent hypoglycemia in newborns and infants and arises from dysregulated insulin secretion. Rapid recognition and treatment are vital to prevent seizures, permanent developmental delays, coma, or even death. Very few medical options exist to treat congenital HI patients: the KATP channel activator diazoxide, the injectable somatostatin receptor peptide agonists octreotide and lanreotide, or chronic glucose infusions. However, side effects and/or limited efficacy render these therapies inadequate for many patients. Somatostatin is a 14-amino acid peptide hormone with a broad spectrum of biological actions, which are regulated through five somatostatin receptor subtypes (SST1-SST5). Somatostatin’s common physiological role is to down-regulate secretion of other hormones in various tissues. Its role in the maintenance of euglycemia is to regulate insulin and glucagon secretion from pancreatic β- and α-cells, respectively. Somatostatin regulates insulin secretion by decreasing the intracellular levels of cAMP, inhibition of voltage-gated calcium channels (VGCC), activation of the G protein-activated inward rectifier K+ channel (GIRK), and direct inhibition of insulin exocytosis. Several studies have evaluated the effect of somatostatin, somatostatin peptide analogs, and a limited number of nonpeptide somatostatin receptor agonists on insulin secretion in static assays using isolated human islets. However, the lack of highly selective agonists has made the interpretation of the contribution of SST receptor sub-types difficult to discern. Our programs for the treatment of hyperinsulinism, acromegaly, and other indications have led to the development of selective nonpeptide SST2, SST3, SST4, and SST5 agonists, possessing EC50s < 1 nM in cell-based assays of receptor activation and selectivity > 130 times over the other members of the family. The ability of these selective nonpeptide agonists to regulate glucose- and tolbutamide-stimulated dynamic insulin secretion from human islets was evaluated using a perifusion system (Biorep, FL). We found that selective SST2 and SST5 agonists potently suppressed dynamic insulin secretion in contrast to SST3 or SST4 selective agonists. Importantly, SST5 agonists were shown to have a greater effect than selective SST2 agonists or diazoxide, demonstrating their potential utility in human conditions such as congenital HI. In addition, SST5 activation is also known to have a smaller effect on glucagon secretion and is also less prone to agonist-driven desensitization than SST2 activation. Taken together, these studies support our program to identify, characterize, and develop potent, nonpeptide, orally-bioavailable, selective SST5 agonists with appropriate pharmaceutical and safety characteristics for the treatment of congenital HI.


2005 ◽  
Vol 187 (3) ◽  
pp. 379-386 ◽  
Author(s):  
William H T Smith ◽  
R Unnikrishnan Nair ◽  
Dawn Adamson ◽  
Mark T Kearney ◽  
Stephen G Ball ◽  
...  

In acromegaly, somatostatin receptor ligands (SRLs) can ameliorate left ventricular hypertrophy (LVH) and their use is associated with demonstrable improvements in various parameters of cardiac function. It remains unclear as to whether these beneficial effects are principally attributable to falling GH and IGF-I levels, or whether SRLs exert independent direct effects on the heart via somatostatin receptors. To help address this issue, we have sought to investigate somatostatin receptor expression in human heart. A human heart cDNA library was probed using PCR techniques to determine expression of somatostatin receptor subtypes. Subsequently, human heart biopsies and human cardiac fibroblasts and myocytes were analysed to determine whether expression differed between cardiac chambers or cell types. mRNAs for four of the five somatostatin receptor subtypes (sst1, sst2, sst4 and sst5) were shown to be co-expressed by the human heart. These receptors were present in both atrial and ventricular tissue. Human cardiac myocytes expressed mRNA for only sst1 and sst2, while human cardiac fibroblasts expressed all four subtypes found in whole heart tissue. The expression of functional somatostatin receptors on human cardiac fibroblasts was confirmed by mobilisation of intracellular calcium in response to somatostatin. The presence of cardiac somatostatin receptors raises the possibility of a direct effect of somatostatin analogues on the heart. Furthermore, the differential expression of somatostatin receptor subtypes by human cardiac myocytes and fibroblasts opens up the possibility of differential modulation of the cell types in the heart by subtype-specific somatostatin analogues.


Sign in / Sign up

Export Citation Format

Share Document