Whole exome sequencing in non-obstructive azoospermia allows the identification of a high-risk subgroup of infertile men for undiagnosed Fanconi Anemia, a cancer-prone disease

2018 ◽  
Author(s):  
Csilla Krausz ◽  
Antoni Riera-Escamilla ◽  
Chiara Chianese ◽  
Daniel Moreno-Mendoza ◽  
Osvaldo Rajmil ◽  
...  
2018 ◽  
Vol 55 (3) ◽  
pp. 198-204 ◽  
Author(s):  
Wen-Bin He ◽  
Chao-Feng Tu ◽  
Qiang Liu ◽  
Lan-Lan Meng ◽  
Shi-Min Yuan ◽  
...  

BackgroundThe genetic causes of the majority of male and female infertility caused by human non-obstructive azoospermia (NOA) and premature ovarian insufficiency (POI) with meiotic arrest are unknown.ObjectiveTo identify the genetic cause of NOA and POI in two affected members from a consanguineous Chinese family.MethodsWe performed whole-exome sequencing of DNA from both affected patients. The identified candidate causative gene was further verified by Sanger sequencing for pedigree analysis in this family. In silico analysis was performed to functionally characterise the mutation, and histological analysis was performed using the biopsied testicle sample from the male patient with NOA.ResultsWe identified a novel homozygous missense mutation (NM_007068.3: c.106G>A, p.Asp36Asn) in DMC1, which cosegregated with NOA and POI phenotypes in this family. The identified missense mutation resulted in the substitution of a conserved aspartic residue with asparaginate in the modified H3TH motif of DMC1. This substitution results in protein misfolding. Histological analysis demonstrated a lack of spermatozoa in the male patient’s seminiferous tubules. Immunohistochemistry using a testis biopsy sample from the male patient showed that spermatogenesis was blocked at the zygotene stage during meiotic prophase I.ConclusionsTo the best of our knowledge, this is the first report identifying DMC1 as the causative gene for human NOA and POI. Furthermore, our pedigree analysis shows an autosomal recessive mode of inheritance for NOA and POI caused by DMC1 in this family.


2014 ◽  
Vol 7 (1) ◽  
Author(s):  
Lixian Chang ◽  
Weiping Yuan ◽  
Huimin Zeng ◽  
Quanquan Zhou ◽  
Wei Wei ◽  
...  

2016 ◽  
Vol 136 (8) ◽  
pp. B9
Author(s):  
B. Feng ◽  
M. Milliken ◽  
M. Safaee ◽  
J. Walsh ◽  
J.E. Hawkes ◽  
...  

2021 ◽  
Vol 31 (1) ◽  
Author(s):  
Farah Ghieh ◽  
Anne-Laure Barbotin ◽  
Julie Prasivoravong ◽  
Sophie Ferlicot ◽  
Béatrice Mandon-Pepin ◽  
...  

Abstract Background Although chromosome rearrangements are responsible for spermatogenesis failure, their impact depends greatly on the chromosomes involved. At present, karyotyping and Y chromosome microdeletion screening are the first-line genetic tests for patients with non-obstructive azoospermia. Although it is generally acknowledged that X or Y chromosome rearrangements lead to meiotic arrest and thus rule out any chance of sperm retrieval after a testicular biopsy, we currently lack markers for the likelihood of testicular sperm extraction (TESE) in patients with other chromosome rearrangements. Results We investigated the use of a single nucleotide polymorphism comparative genome hybridization array (SNP-CGH) and whole-exome sequencing (WES) for two patients with non-obstructive azoospermia and testicular meiotic arrest, a reciprocal translocation: t(X;21) and t(20;22), and an unsuccessful TESE. No additional gene defects were identified for the t(X;21) carrier - suggesting that t(X;21) alone damages spermatogenesis. In contrast, the highly consanguineous t(20;22) carrier had two deleterious homozygous variants in the TMPRSS9 gene; these might have contributed to testicular meiotic arrest. Genetic defect was confirmed with Sanger sequencing and immunohistochemical assessments on testicular tissue sections. Conclusions Firstly, TMPRSS9 gene defects might impact spermatogenesis. Secondly, as a function of the chromosome breakpoints for azoospermic patients with chromosome rearrangements, provision of the best possible genetic counselling means that genetic testing should not be limited to karyotyping. Given the risks associated with TESE, it is essential to perform WES - especially for consanguineous patients.


Gene ◽  
2013 ◽  
Vol 530 (2) ◽  
pp. 295-300 ◽  
Author(s):  
Zhaojing Zheng ◽  
Juan Geng ◽  
Ru-en Yao ◽  
Caihua Li ◽  
Daming Ying ◽  
...  

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 637-637 ◽  
Author(s):  
Eileen M Boyle ◽  
Brian A Walker ◽  
Christopher P Wardell ◽  
Alexander Murison ◽  
Lorenzo Melchor ◽  
...  

Abstract Background: The main genetic features of myeloma identified so far have been the presence of balanced translocations at the immunoglobulin heavy chain (IGH) region and copy number abnormalities. Novel methodologies such as massively parallel sequencing have begun to describe the pattern of tumour acquired mutations detected at presentation but their biological and clinical relevance has not yet been fully established. Methods: Whole exome sequencing was performed on 463 presentation patients enrolled into the large UK, phase III, open label, Myeloma XI trial. DNA was extracted from germline DNA and CD138+ plasma cells and whole exome sequencing was performed using SureSelect (Agilent). In addition to capturing the exome, extra baits were added covering the IGH, IGK, IGL and MYC loci in order to determine the breakpoints associated with translocations in these genes. Tumour and germline DNA were sequenced to a median of 60x and data processed to generate copy number, acquired variants and translocation breakpoints in the tumour. Progression-free and overall survival was measured from initial randomization and median follow up for this analysis was 25 months. These combined data allow us to examine the effect of translocations on the mutational spectra in myeloma and determine any associations with progression-free or overall survival. Results: We identified 15 significantly mutated genes comprising IRF4, KRAS, NRAS, MAX, HIST1H1E, RB1, EGR1, TP53, TRAF3, FAM46C, DIS3, BRAF, LTB, CYLD and FGFR3. By analysing the correlation between mutations and cytogenetic events using a probabilistic approach, we describe the co-segregation of t(11;14) with CCND1 mutations (Corr 0.28,BF=1.5x106 (Bayes Factor)) and t(4;14) with FGFR3 (Corr=0.40, BF=1.12x1014) and PRKD2 mutations (Corr=0.23, BF=3507). The mutational spectrum is dominated by mutations in the RAS (43%) and NF-κB (17%) pathway, however they are prognostically neutral. We describe for the first time in myeloma mutations in genes such as CCND1 and DNA repair pathway alterations (TP53, ATM, ATR and ZFHX4 mutations) that are associated with a negative impact on survival in contrast to those in IRF4 and EGR1 that are associated with a favourable overall-survival. By combining these novel risk factors with the previously described adverse cytogenetic features and ISS we were able to demonstrate in a multivariate analysis the independent prognostic relevance of copy number and structural abnormalities (CNSA) such as del(17p), t(4;14), amp(1q), hyperdiploidy and MYC translocations and mutations in genes such as ATM/ATR, ZFHX4, TP53 and CCND1. We demonstrate that the more adverse features a patient had the worse his outcome was for both PFS (one lesion: HR=1.6, p=0.0012, 2 lesions HR=3.3, p<0.001, 3 lesions HR=15.2, p< 0.001) and for OS (one lesion: HR=2.01, p=0.0032, 2 lesions HR=4.79, p<0.001, 3 lesions HR=9.62, p< 0.001). When combined with ISS, we identified 3 prognostic groups (Group 1: ISS I/II with no CNSA or mutation, Group 2: ISS III with no CNSA or mutation or ISS I/II/III with one CNSA or mutation, Group 3: Two CNSA or mutation regardless of their ISS) thus identifying three distinct prognostic groups with a high risk population representing 13% of patients that both relapsed [median PFS 10.6 months (95% CI 8.7-17.9) versus 27.7 months (95% CI 25.99-31.1), p<0.001] and died prematurely [median overall survival 23.2 months (95% CI 18.2-35.3.) versus not reached, p<0.001] regardless of their ISS score. Finally, we have also identified a list of potentially actionable mutations for which targeted therapy already exists opening the way into personalized medicine in myeloma. Conclusion: We have refined our understanding of genetic events in myeloma and identified clinically relevant mutations that may be used to better stratify patients at presentation. Identifying high risk populations or patients that may benefit from targeted therapy may open the way into personalized medicine for myeloma. Disclosures Walker: Onyx Pharmaceuticals: Consultancy, Honoraria.


Sign in / Sign up

Export Citation Format

Share Document