scholarly journals Molecular diversity of corticotropin-releasing hormone mRNA-containing neurons in the hypothalamus

2017 ◽  
Vol 232 (3) ◽  
pp. R161-R172 ◽  
Author(s):  
Roman A Romanov ◽  
Alán Alpár ◽  
Tomas Hökfelt ◽  
Tibor Harkany

Hormonal responses to acute stress rely on the rapid induction of corticotropin-releasing hormone (CRH) production in the mammalian hypothalamus, with subsequent instructive steps culminating in corticosterone release at the periphery. Hypothalamic CRH neurons in the paraventricular nucleus of the hypothalamus are therefore considered as ‘stress neurons’. However, significant morphological and functional diversity among neurons that can transiently produce CRH in other hypothalamic nuclei has been proposed, particularly as histochemical and molecular biology evidence associates CRH to both GABA and glutamate neurotransmission. Here, we review recent advances through single-cell RNA sequencing and circuit mapping to suggest that CRH production reflects a state switch in hypothalamic neurons and thus confers functional competence rather than being an identity mark of phenotypically segregated neurons. We show that CRH mRNA transcripts can therefore be seen in GABAergic, glutamatergic and dopaminergic neuronal contingents in the hypothalamus. We then distinguish ‘stress neurons’ of the paraventricular nucleus that constitutively express secretagogin, a Ca2+ sensor critical for the stimulus-driven assembly of the molecular machinery underpinning the fast regulated exocytosis of CRH at the median eminence. Cumulatively, we infer that CRH neurons are functionally and molecularly more diverse than previously thought.

2001 ◽  
Vol 73 (5) ◽  
pp. 293-301 ◽  
Author(s):  
Toshihiro Imaki ◽  
Harumi Katsumata ◽  
Mariko Miyata ◽  
Mitsuhide Naruse ◽  
Junko Imaki ◽  
...  

1993 ◽  
Vol 128 (6) ◽  
pp. 485-492 ◽  
Author(s):  
Sandra Ceccatelli ◽  
Catello Orazzo

Using in situ hybridization we have studied the effects of different types of stressors, such as ether, immobilization, cold and swimming, on the expression of several peptide messenger ribonucleic acids (mRNAs) in the hypothalamic paraventricular nucleus of adult male rats. Paraventricular nucleus sections were hybridized using synthetic oligonucleotide probes complementary to mRNA for corticotropin-releasing hormone, neurotensin, enkephalin and thyrotropin-releasing hormone. A clear upregulation of neurotensin mRNA was seen after ether and, to a lesser extent, after immobilization stress, whereas after the two other stressors neurotensin mRNA was undetectable, as in control rats. An increase in enkephalin mRNA was observed in a selective region of the dorsal part of the medioparvocellular subdivision of the paraventricular nucleus only after ether and immobilization stress. No significant changes were seen in corticotropin-releasing hormone and thyrotropin-releasing hormone mRNA levels in any of the experimental paradigms. The present results show selective changes for various peptide mRNAs in the paraventricular nucleus after various types of stress. Significant effects could be demonstrated only on neurotensin and enkephalin mRNA after ether and immobilization stress. This suggests that adaptive changes in the rate of synthesis, processing and transport of the peptide may develop over a longer period of time.


2005 ◽  
Vol 153 (3) ◽  
pp. R7-R10 ◽  
Author(s):  
A P Silva ◽  
P Schoeffter ◽  
G Weckbecker ◽  
C Bruns ◽  
H A Schmid

Objective: Adrenocorticotropic hormone (ACTH)-dependent Cushing’s syndrome is biochemically characterized by increased plasma concentrations of ACTH inducing hypersecretion of cortisol. Somatostatin is known to inhibit ACTH secretion, and in vitro data have shown the inhibition of ACTH secretion by agonists activating sst2 and sst5 receptors. The present study aimed to determine the inhibitory effect of the multireceptor ligand SOM230, compared with the sst2-preferring agonist octreotide, on corticotropin-releasing hormone (CRH)-stimulated secretion of ACTH and corticosterone in rats. Methods: Secretion of ACTH and corticosterone was induced by i.v. application of CRH (0.5 μg/kg) in rats pretreated 1 h before by i.v. application of SOM230 (1, 3, or 10 μg/kg), octreotide (10 μg/kg) or NaCl 0.9%. Results: SOM230 (3 and 10 μg/kg) inhibited CRH-induced ACTH release by 45±3% and 51±2%, respectively, and corticosterone release by 43±5% and 27±16%, respectively. 10 μg/kg of octreotide tended to be less potent at inhibiting ACTH release (34±6% inhibition) and did not alter the secretion of corticosterone. Conclusion: SOM230 has a stronger inhibitory effect on ACTH and corticosterone secretion than octreotide in rats. This difference can be explained by its higher affinity to sst1, sst3 and especially sst5 receptors compared with octreotide.


Sign in / Sign up

Export Citation Format

Share Document