scholarly journals Epigenetic reprogramming in embryonic and foetal development upon somatic cell nuclear transfer cloning

Reproduction ◽  
2008 ◽  
Vol 135 (2) ◽  
pp. 151-163 ◽  
Author(s):  
Heiner Niemann ◽  
X Cindy Tian ◽  
W Allan King ◽  
Rita S F Lee

The birth of ‘Dolly’, the first mammal cloned from an adult donor cell, has sparked a flurry of research activities to improve cloning technology and to understand the underlying mechanism of epigenetic reprogramming of the transferred somatic cell nucleus. Especially in ruminants, somatic cell nuclear transfer (SCNT) is frequently associated with pathological changes in the foetal and placental phenotype and has significant consequences for development both before and after birth. The most critical factor is epigenetic reprogramming of the transferred somatic cell nucleus from its differentiated status into the totipotent state of the early embryo. This involves an erasure of the gene expression program of the respective donor cell and the establishment of the well-orchestrated sequence of expression of an estimated number of 10 000–12 000 genes regulating embryonic and foetal development. The following article reviews the present knowledge on the epigenetic reprogramming of the transferred somatic cell nucleus, with emphasis on DNA methylation, imprinting, X-chromosome inactivation and telomere length restoration in bovine development. Additionally, we briefly discuss other approaches towards epigenetic nuclear reprogramming, including the fusion of somatic and embryonic stem cells and the overexpression of genes crucial in the formation and maintenance of the pluripotent status. Improvements in our understanding of this dramatic epigenetic reprogramming event will be instrumental in realising the great potential of SCNT for basic biological research and for various agricultural and biomedical applications.

2020 ◽  
Vol 21 (7) ◽  
pp. 2314 ◽  
Author(s):  
Chantel Gouveia ◽  
Carin Huyser ◽  
Dieter Egli ◽  
Michael S. Pepper

Somatic cell nuclear transfer (SCNT) has been an area of interest in the field of stem cell research and regenerative medicine for the past 20 years. The main biological goal of SCNT is to reverse the differentiated state of a somatic cell, for the purpose of creating blastocysts from which embryonic stem cells (ESCs) can be derived for therapeutic cloning, or for the purpose of reproductive cloning. However, the consensus is that the low efficiency in creating normal viable offspring in animals by SCNT (1–5%) and the high number of abnormalities seen in these cloned animals is due to epigenetic reprogramming failure. In this review we provide an overview of the current literature on SCNT, focusing on protocol development, which includes early SCNT protocol deficiencies and optimizations along with donor cell type and cell cycle synchrony; epigenetic reprogramming in SCNT; current protocol optimizations such as nuclear reprogramming strategies that can be applied to improve epigenetic reprogramming by SCNT; applications of SCNT; the ethical and legal implications of SCNT in humans; and specific lessons learned for establishing an optimized SCNT protocol using a mouse model.


2005 ◽  
Vol 17 (2) ◽  
pp. 69 ◽  
Author(s):  
Stefan Hiendleder ◽  
Valeri Zakhartchenko ◽  
Eckhard Wolf

The overall success of somatic cell nuclear transfer (SCNT) cloning is rather unsatisfactory, both in terms of efficacy and from an animal health and welfare point of view. Most research activities have concentrated on epigenetic reprogramming problems as one major cause of SCNT failure. The present review addresses the limited success of mammalian SCNT from yet another viewpoint, the mitochondrial perspective. Mitochondria have a broad range of critical functions in cellular energy supply, cell signalling and programmed cell death and, thus, affect embryonic and fetal development, suggesting that inadequate or perturbed mitochondrial functions may adversely affect SCNT success. A survey of perinatal clinical data from human subjects with deficient mitochondrial respiratory chain activity has revealed a plethora of phenotypes that have striking similarities with abnormalities commonly encountered in SCNT fetuses and offspring. We discuss the limited experimental data on nuclear–mitochondrial interaction effects in SCNT and explore the potential effects in the context of new findings about the biology of mitochondria. These include mitochondrial fusion/fission, mitochondrial complementation and mitochondrial DNA recombination, processes that are likely to be affected by and impact on SCNT cloning. Furthermore, we indicate pathways that could link epigenetic reprogramming and mitochondria effects in SCNT and address questions and perspectives for future research.


Zygote ◽  
2011 ◽  
Vol 21 (3) ◽  
pp. 246-249
Author(s):  
Yue-Liang Zheng

SummaryWhale oocytes recovered from follicles can be matured in vitro. Whale sperm and mature oocytes can be used for in vitro fertilization (IVF), and IVF embryos have the ability to develop to morula stage. Whale sperm injected into bovine or mouse oocytes can activate the oocytes and form pronucleus. Interspecies somatic cell nuclear transfer embryos have been reconstructed with whale somatic cell nucleus and enucleated bovine or porcine oocytes, and interspecies cloned embryos can develop in vitro. This paper reviews recent progress in maturation, fertilization and development of whale oocytes.


2018 ◽  
Vol 30 (10) ◽  
pp. 1342 ◽  
Author(s):  
Zhao-Bo Luo ◽  
Long Jin ◽  
Qing Guo ◽  
Jun-Xia Wang ◽  
Xiao-Xu Xing ◽  
...  

Accumulating evidence suggests that aberrant epigenetic reprogramming and low pluripotency of donor nuclei lead to abnormal development of cloned embryos and underlie the inefficiency of mammalian somatic cell nuclear transfer (SCNT). The present study demonstrates that treatment with the small molecule RepSox alone upregulates the expression of pluripotency-related genes in porcine SCNT embryos. Treatment with the histone deacetylase inhibitor LBH589 significantly increased the blastocyst formation rate, whereas treatment with RepSox did not. Cotreatment with 12.5 μM RepSox and 50 nM LBH589 (RepSox + LBH589) for 24 h significantly increased the blastocyst formation rate compared with that of untreated embryos (26.9% vs 8.5% respectively; P < 0.05). Furthermore, the expression of pluripotency-related genes octamer-binding transcription factor 4 (NANOG) and SRY (sex determining region Y)-box 2 (SOX2) were found to significantly increased in the RepSox + LBH589 compared with control group at both the 4-cell and blastocyst stages. In particular, the expression of NANOG was 135-fold higher at the blastocyst stage in the RepSox + LBH589 group. Moreover, RepSox + LBH589 improved epigenetic reprogramming. In summary, RepSox + LBH589 increases the expression of developmentally important genes, optimises epigenetic reprogramming and improves the in vitro development of porcine SCNT embryos.


2018 ◽  
Vol 50 (4) ◽  
pp. 1376-1397 ◽  
Author(s):  
Yanhui Zhai ◽  
Zhiren Zhang ◽  
Hao Yu ◽  
Li Su ◽  
Gang Yao ◽  
...  

Background/Aims: DNA methylation and histone modifications are essential epigenetic marks that can significantly affect the mammalian somatic cell nuclear transfer (SCNT) embryo development. However, the mechanisms by which the DNA methylation affects the epigenetic reprogramming have not been fully elucidated. Methods: In our study, we used quantitative polymerase chain reaction (qPCR), Western blotting, immunofluorescence staining (IF) and sodium bisulfite genomic sequencing to examine the effects of RG108, a DNA methyltransferase inhibitor (DNMTi), on the dynamic pattern of DNA methylation and histone modifications in porcine SCNT embryos and investigate the mechanism by which the epigenome status of donor cells’ affects SCNT embryos development and the crosstalk between epigenetic signals. Results: Our results showed that active DNA demethylation was enhanced by the significantly improving expression levels of TET1, TET2, TET3 and 5hmC, and passive DNA demethylation was promoted by the remarkably inhibitory expression levels of DNMT1, DNMT3A and 5mC in embryos constructed from the fetal fibroblasts (FFs) treated with RG108 (RG-SCNT embryos) compared to the levels in embryos from control FFs (FF-SCNT embryos). The signal intensity of histone H3 lysine 4 trimethylation (H3K4me3) and histone H3 lysine 9 acetylation (H3K9Ac) was significantly increased and the expression levels of H3K4 methyltransferases were more than 2-fold higher expression in RG-SCNT embryos. RG-SCNT embryos had significantly higher cleavage and blastocyst rates (69.3±1.4%, and 24.72±2.3%, respectively) than FF-SCNT embryos (60.1±2.4% and 18.38±1.9%, respectively). Conclusion: Dynamic changes in DNA methylation caused by RG108 result in dynamic alterations in the patterns of H3K4me3, H3K9Ac and histone H3 lysine 9 trimethylation (H3K9me3), which leads to the activation of embryonic genome and epigenetic modification enzymes associated with H3K4 methylation, and contributes to reconstructing normal epigenetic modifications and improving the developmental efficiency of porcine SCNT embryos.


2021 ◽  
Vol 23 (2) ◽  
pp. 99-107
Author(s):  
LiJun Wang ◽  
LiXiu Liu ◽  
YongSheng Wang ◽  
Nan Li ◽  
HongLi Zhu ◽  
...  

2020 ◽  
Vol 32 (2) ◽  
pp. 133
Author(s):  
Z.-B. Luo ◽  
M.-F. Xuan ◽  
Z.-Y. Li ◽  
X.-J. Yin ◽  
J.-D. Kang

Accumulating evidence suggests that aberrant epigenetic reprogramming and low pluripotency of donor nuclei lead to abnormal development of cloned embryos and underlie the inefficiency of mammalian somatic cell nuclear transfer (SCNT). In this study, we compared histone deacetylase inhibitors combined with the pluripotency inducer RepSox on invitro development of porcine embryos produced via SCNT. Porcine embryos were treated with valproic acid (VPA), mocetinostat, M344 and panobinostat (LBH589) after SCNT, respectively. The porcine embryo invitro-development competence, histone modification level, and pluripotency-related genes expression were analysed. The results showed that LBH589 significantly increased the blastocyst formation rate compared with mocetinostat, M344, and control. In addition, VPA treatment increased the blastocyst formation rate of SCNT porcine embryos; both VPA-treated and the untreated clones developed to term, but offspring from VPA-treated embryos had a lower survival to adulthood than those from control embryos (18.2 vs. 67.0%; P&lt;0.05). Furthermore, cotreatment with 12.5mM RepSox and 50 nM LBH589 (RepSox+LBH589) for 24h significantly increased the blastocyst formation rate compared with that of untreated embryos (26.9 vs. 8.5%, respectively; P&lt;0.05). Moreover, RepSox + LBH589 improved epigenetic reprogramming by histone acetylation and methylation. The expression of pluripotency-related genes NANOG and SOX2 was found to be significantly increased in the RepSox + LBH589 compared with control group at both the 4-cell and blastocyst stages. In particular, the expression of NANOG was 135-fold higher at the blastocyst stage in the RepSox + LBH589 group. In summary, RepSox + LBH589 increases the expression of developmentally important genes, optimises epigenetic reprogramming, and improves the invitro development of porcine SCNT embryos.


Zygote ◽  
2007 ◽  
Vol 15 (1) ◽  
pp. 25-33 ◽  
Author(s):  
N. Chen ◽  
S-L. Liow ◽  
R. Bin Abdullah ◽  
WK. Khadijah Wan Embong ◽  
W-Y. Yip ◽  
...  

SUMMARYSomatic cell nuclear transfer (SCNT) is not successful so far in non-human primates. The objective of this study was to investigate the effects of stimulation cycles (first and repeat) on oocyte retrieval and in vitro maturation (IVM) and to evaluate the effects of stimulation cycles and donor cell type (cumulus and fetal skin fibroblasts) on efficiency of SCNT with transported IVM oocytes. In this study, 369 immature oocytes were collected laparoscopically at 24 h following human chorionic gonadotrophin (hCG) treatment from 12 cynomolgus macaque (Macaca fascicularis) in 24 stimulation cycles, and shipped in pre-equilibrated IVM medium for a 5 h journey, placed in a dry portable incubator (37 °C) without CO2 supplement. A total of 70.6% (247/350) of immature oocytes reached metaphase II (MII) stage at 36 h after hCG administration, MII spindle could be seen clearly in 80.6% (104/129) of matured IVM oocytes under polarized microscopy. A total of 50.0% (37/74) of reconstructive SCNT embryos cleaved after activation; after cleavage, 37.8% (14/37) developed to the 8-cell stage and 8.1% (3/37) developed to morula, but unfortunately none developed to the blastocyst stage. Many more oocytes could be retrieved per cycle from monkeys in the first cycle than in repeated cycles (19.1 vs. 11.7, p < 0.05). There were no significant differences in the maturation rate (70.0 vs. 71.4%, p > 0.05) and MII spindle rate under polarized microscopy (76.4 vs. 86.0%, p > 0.05) between the first and repeat cycles. There were also no significant differences in the cleavage rate, and the 4-cell, 8-cell and morula development rate of SCNT embryos between the first and repeat cycles. When fibroblast cells and cumulus cells were used as the donor cells for SCNT, first cleavage rate was not significantly different, but 4-cell (50.0 vs. 88.9%, p < 0.05) and 8-cell (0 vs. 51.9%, p < 0.01) development rate were significantly lower for the former. In conclusion, the number of stimulation cycles has a significant effect on oocyte retrieval, but has no effect on maturation and SCNT embryo development; however, different donor cell types (cumulus and fibroblast) resulted in different developmental potentials of SCNT embryos.


Author(s):  
Zhenhua Guo ◽  
Lei Lv ◽  
Di Liu ◽  
Zhongqiu Li

Herd boars, male domestic pigs used for stud, are economically important, and somatic cell nuclear transfer (SCNT) is a promising technology to expand herd boar yields. However, live births are dictated by donor cell source, and fetal donors may offer more advantages than adult donors. A meta-analysis was conducted to better understand how donor sources affect SCNT outcomes. Of the 1,431 records viewed, 10 were selected for review. Blastocyst formation rates, successful pregnancies, and live births were assessed to measure efficacy. SCNT blastocyst formation differed between adult and fetal donors among the studies. SCNT pigs had more malformed fetuses as well, which negatively affected the post-birth mortality. Organs of porcine fetuses are limited by deficiencies of maternal nutrient and growth hormones, which compromise post-birth adaptations. SCNT pregnancy success is neither determined by donor source nor by live births. Live births are also tied to donor age. Embryos from fetal donors are more frequently healthy likely due to less differentiation and less reprogramming of reconstructed embryos. Adult donors in contrast have more cell differentiation and as such accumulate more mutations and damage. This may reduce reconstructed embryo viability. Finally, SCNT efficiency may be improved with more in vitro passages, but more work is required to validate this concept.


Sign in / Sign up

Export Citation Format

Share Document