scholarly journals Some properties of approximants for branched continued fractions of the special form with positive and alternating-sign partial numerators

2018 ◽  
Vol 10 (1) ◽  
pp. 3-13 ◽  
Author(s):  
T.M. Antonova ◽  
M.V. Dmytryshyn ◽  
S.M. Vozna

The paper deals with research of convergence for one of the generalizations of continued fractions -- branched continued fractions of the special form with two branches. Such branched continued fractions, similarly as the two-dimensional continued fractions and the branched continued fractions with two independent variables are connected with the problem of  the correspondence between a formal double power series and a sequence of the rational approximants of a function of two variables. Unlike continued fractions, approximants of which are constructed unambiguously, there are many ways to construct approximants of branched continued fractions of the general and the special form. The paper examines the ordinary approximants and one of the structures of figured approximants of the studied branched continued fractions, which is connected with the problem of correspondence. We consider some properties of approximants of such fractions, whose partial numerators are positive and alternating-sign  and partial denominators are equal to one. Some necessary and sufficient conditions for figured convergence are established. It is proved that under these conditions from the convergence of the sequence of figured approximants it follows the convergence of the sequence of ordinary approximants  to the same limit.

2017 ◽  
Vol 9 (1) ◽  
pp. 13-21 ◽  
Author(s):  
D.I. Bodnar ◽  
I.B. Bilanyk

In this paper the problem of convergence of the important type of a multidimensional generalization of continued fractions, the branched continued fractions with independent variables, is considered. This fractions are an efficient apparatus for the approximation of multivariable functions, which are represented by multiple power series. When variables are fixed these fractions are called the branched continued fractions of the special form. Their structure is much simpler then the structure of general branched continued fractions. It has given a possibility to establish the necessary and sufficient conditions of convergence of branched continued fractions of the special form with the positive elements. The received result is the multidimensional analog of Seidel's criterion for the continued fractions. The condition of convergence of investigated fractions is the divergence of series, whose elements are continued fractions. Therefore, the sufficient condition of the convergence of this fraction which has been formulated by the divergence of series composed of partial denominators of this fraction, is established. Using the established criterion and Stieltjes-Vitali Theorem the parabolic theorems of branched continued fractions of the special form with complex elements convergence, is investigated. The sufficient conditions gave a possibility to make the condition of convergence of the branched continued fractions of the special form, whose elements lie in parabolic domains.


2021 ◽  
Vol 13 (3) ◽  
pp. 592-607
Author(s):  
R.I. Dmytryshyn ◽  
S.V. Sharyn

The paper deals with the problem of approximation of functions of several variables by branched continued fractions. We study the correspondence between formal multiple power series and the so-called "multidimensional $S$-fraction with independent variables". As a result, the necessary and sufficient conditions for the expansion of the formal multiple power series into the corresponding multidimensional $S$-fraction with independent variables have been established. Several numerical experiments show the efficiency, power and feasibility of using the branched continued fractions in order to numerically approximate certain functions of several variables from their formal multiple power series.


2015 ◽  
Vol 61 (1) ◽  
pp. 169-179 ◽  
Author(s):  
Mehmet Zeki Sarikaya

Abstract In this paper, we obtain weighted Montgomery’s identities for function of two variables and apply them to give new generalization weighted integral inequality for double integrals involving functions of two independent variables by using fairly elementary analysis.


1990 ◽  
Vol 21 (3) ◽  
pp. 211-213
Author(s):  
B. G. PACHPATTE

In the present note we establish a new integral inequality involving a function of two independent variables and its partial derivatives.


2001 ◽  
Vol 32 (3) ◽  
pp. 201-209 ◽  
Author(s):  
E. Thandapani ◽  
B. Ponnammal

The authors consider the two-dimensional difference system$$ \Delta x_n = b_n g (y_n) $$ $$ \Delta y_n = -f(n, x_{n+1}) $$where $ n \in N(n_0) = \{ n_0, n_0+1, \ldots \} $, $ n_0 $ a nonnegative integer; $ \{ b_n \} $ is a real sequence, $ f: N(n_0) \times {\rm R} \to {\rm R} $ is continuous with $ u f(n,u) > 0 $ for all $ u \ne 0 $. Necessary and sufficient conditions for the existence of nonoscillatory solutions with a specified asymptotic behavior are given. Also sufficient conditions for all solutions to be oscillatory are obtained if $ f $ is either strongly sublinear or strongly superlinear. Examples of their results are also inserted.


2018 ◽  
Vol 9 (2) ◽  
pp. 120-127 ◽  
Author(s):  
R.I. Dmytryshyn

In this paper, we consider the problem of convergence of an important type of multidimensional generalization of continued fractions, the branched continued fractions with independent variables. These fractions are an efficient apparatus for the approximation of multivariable functions, which are represented by multiple power series. We have established the effective criterion of absolute convergence of branched continued fractions of the special form in the case when the partial numerators are complex numbers and partial denominators are equal to one. This result is a multidimensional analog of the Worpitzky's criterion for continued fractions. We have investigated the polycircular domain of uniform convergence for multidimensional C-fractions with independent variables in the case of nonnegative coefficients of this fraction.


1961 ◽  
Vol 2 (1) ◽  
pp. 11-16
Author(s):  
W. B. Smith-White

It is known that the theory of Cauchy's problem for differential equations with two independent variables is réducible to the corresponding problem for systems of quasi-linear equations. The reduction is carried further, by means of the theory of characteristics, to the case of systems of equations of the special form first considered by H. Lewy [1]. The simplest case is that of the pair of equationswhere the aii depend on z1 and z2. The problem to be considered is that of finding functions z1(x, y), z2(x, y) which satisfy (1) and which take prescribed values on x + y = 0.


2005 ◽  
Vol 12 (1) ◽  
pp. 75-88
Author(s):  
György Gát ◽  
Ushangi Goginava

Abstract We discuss some convergence and divergence properties of twodimensional (Nörlund) logarithmic means of two-dimensional Walsh–Fourier series of functions both in the uniform and in the Lebesgue norm. We give necessary and sufficient conditions for the convergence regarding the modulus of continuity of the function, and also the function space.


1999 ◽  
Vol 129 (5) ◽  
pp. 1081-1105 ◽  
Author(s):  
Miroslav Šilhavý

Let f be a rotationally invariant function defined on the set Lin+ of all tensors with positive determinant on a vector space of arbitrary dimension. Necessary and sufficient conditions are given for the rank 1 convexity of f in terms of its representation through the singular values. For the global rank 1 convexity on Lin+, the result is a generalization of a two-dimensional result of Aubert. Generally, the inequality on contains products of singular values of the type encountered in the definition of polyconvexity, but is weaker. It is also shown that the rank 1 convexity is equivalent to a restricted ordinary convexity when f is expressed in terms of signed invariants of the deformation.


Sign in / Sign up

Export Citation Format

Share Document